Giant Superlinear Power Dependence of Photocurrent Based on Layered Ta2NiS5 Photodetector

Photodetector based on two‐dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power‐dependent photoresponse and lower optoelectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2023-07, Vol.10 (20), p.n/a
Hauptverfasser: Meng, Xianghao, Du, Yuhan, Wu, Wenbin, Joseph, Nesta Benno, Deng, Xing, Wang, Jinjin, Ma, Jianwen, Shi, Zeping, Liu, Binglin, Ma, Yuanji, Yue, Fangyu, Zhong, Ni, Xiang, Ping‐Hua, Zhang, Cheng, Duan, Chun‐Gang, Narayan, Awadhesh, Sun, Zhenrong, Chu, Junhao, Yuan, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Advanced science
container_volume 10
creator Meng, Xianghao
Du, Yuhan
Wu, Wenbin
Joseph, Nesta Benno
Deng, Xing
Wang, Jinjin
Ma, Jianwen
Shi, Zeping
Liu, Binglin
Ma, Yuanji
Yue, Fangyu
Zhong, Ni
Xiang, Ping‐Hua
Zhang, Cheng
Duan, Chun‐Gang
Narayan, Awadhesh
Sun, Zhenrong
Chu, Junhao
Yuan, Xiang
description Photodetector based on two‐dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power‐dependent photoresponse and lower optoelectronic efficiency. The desirable superlinear photocurrent is mostly achieved by sophisticated 2D heterostructures or device arrays, while 2D materials rarely show intrinsic superlinear photoresponse. This work reports the giant superlinear power dependence of photocurrent based on multilayer Ta2NiS5. While the fabricated photodetector exhibits good sensitivity (3.1 mS W−1per □) and fast photoresponse (31 µs), the bias‐, polarization‐, and spatial‐resolved measurements point to an intrinsic photoconductive mechanism. By increasing the incident power density from 1.5 to 200 µW µm−2, the photocurrent power dependence varies from sublinear to superlinear. At higher illuminating conditions, prominent superlinearity is observed with a giant power exponent of γ = 1.5. The unusual photoresponse can be explained by a two‐recombination‐center model where density of states of the recombination centers (RC) effectively closes all recombination channels. The photodetector is integrated into camera for taking photos with enhanced contrast due to superlinearity. This work provides an effective route to enable higher optoelectronic efficiency at extreme conditions. 2D photodetectors generally suffer recombination processes, which result in the sublinear power dependence of photoresponse. Here, the article reports giant superlinear power dependence of photocurrent with power exponent reaching γ = 1.5 due to suppression of recombination channel. The photodetector is integrated into camera, showing enhanced imaging contrast due to the superlinearity.
doi_str_mv 10.1002/advs.202300413
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10369293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841742285</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3247-ab196c009a6e8b94d5bafd9617c50ee0d7b8d1758fd5e8c81f2bc6a5c63f046e3</originalsourceid><addsrcrecordid>eNpVkUtLxDAUhYMoKurWdcH1aG7eXYmOTxhUGBVchTS51UqnqWnrMP_eyojo6h64Hx8HDiGHQI-BUnbiwmd3zCjjlArgG2SXQW4m3Aix-SfvkIOue6eUguRagNkmO1wDKACzS16uK9f02XxoMdVVgy5lD3GJKbvAFpuAjccsltnDW-yjH1LCET53HYYsNtnMrTCN8dGxu2ou11TAHn0f0z7ZKl3d4cHP3SNPV5eP05vJ7P76dno2m7ScCT1xBeTKU5o7habIRZCFK0OuQHtJEWnQhQmgpSmDROMNlKzwykmveEmFQr5HTtfedigWGPzYMLnatqlauLSy0VX2_6ep3uxr_LRAucpZzkfD0Y8hxY8Bu96-xyE1Y2nLjAAtGDNypMSaWlY1rn79QO33FvZ7C_u7hT27eJ5LJTX_Am2ofoo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841742285</pqid></control><display><type>article</type><title>Giant Superlinear Power Dependence of Photocurrent Based on Layered Ta2NiS5 Photodetector</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Meng, Xianghao ; Du, Yuhan ; Wu, Wenbin ; Joseph, Nesta Benno ; Deng, Xing ; Wang, Jinjin ; Ma, Jianwen ; Shi, Zeping ; Liu, Binglin ; Ma, Yuanji ; Yue, Fangyu ; Zhong, Ni ; Xiang, Ping‐Hua ; Zhang, Cheng ; Duan, Chun‐Gang ; Narayan, Awadhesh ; Sun, Zhenrong ; Chu, Junhao ; Yuan, Xiang</creator><creatorcontrib>Meng, Xianghao ; Du, Yuhan ; Wu, Wenbin ; Joseph, Nesta Benno ; Deng, Xing ; Wang, Jinjin ; Ma, Jianwen ; Shi, Zeping ; Liu, Binglin ; Ma, Yuanji ; Yue, Fangyu ; Zhong, Ni ; Xiang, Ping‐Hua ; Zhang, Cheng ; Duan, Chun‐Gang ; Narayan, Awadhesh ; Sun, Zhenrong ; Chu, Junhao ; Yuan, Xiang</creatorcontrib><description>Photodetector based on two‐dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power‐dependent photoresponse and lower optoelectronic efficiency. The desirable superlinear photocurrent is mostly achieved by sophisticated 2D heterostructures or device arrays, while 2D materials rarely show intrinsic superlinear photoresponse. This work reports the giant superlinear power dependence of photocurrent based on multilayer Ta2NiS5. While the fabricated photodetector exhibits good sensitivity (3.1 mS W−1per □) and fast photoresponse (31 µs), the bias‐, polarization‐, and spatial‐resolved measurements point to an intrinsic photoconductive mechanism. By increasing the incident power density from 1.5 to 200 µW µm−2, the photocurrent power dependence varies from sublinear to superlinear. At higher illuminating conditions, prominent superlinearity is observed with a giant power exponent of γ = 1.5. The unusual photoresponse can be explained by a two‐recombination‐center model where density of states of the recombination centers (RC) effectively closes all recombination channels. The photodetector is integrated into camera for taking photos with enhanced contrast due to superlinearity. This work provides an effective route to enable higher optoelectronic efficiency at extreme conditions. 2D photodetectors generally suffer recombination processes, which result in the sublinear power dependence of photoresponse. Here, the article reports giant superlinear power dependence of photocurrent with power exponent reaching γ = 1.5 due to suppression of recombination channel. The photodetector is integrated into camera, showing enhanced imaging contrast due to the superlinearity.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202300413</identifier><identifier>PMID: 37116118</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Arrays ; Crystal structure ; Graphene ; high‐power sensor ; Lasers ; layered ternary chalcogenides ; photoconductive detector ; Single crystals ; Spectrum allocation ; Spectrum analysis ; superlinear photoresponse</subject><ispartof>Advanced science, 2023-07, Vol.10 (20), p.n/a</ispartof><rights>2023 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7065-3838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369293/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369293/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids></links><search><creatorcontrib>Meng, Xianghao</creatorcontrib><creatorcontrib>Du, Yuhan</creatorcontrib><creatorcontrib>Wu, Wenbin</creatorcontrib><creatorcontrib>Joseph, Nesta Benno</creatorcontrib><creatorcontrib>Deng, Xing</creatorcontrib><creatorcontrib>Wang, Jinjin</creatorcontrib><creatorcontrib>Ma, Jianwen</creatorcontrib><creatorcontrib>Shi, Zeping</creatorcontrib><creatorcontrib>Liu, Binglin</creatorcontrib><creatorcontrib>Ma, Yuanji</creatorcontrib><creatorcontrib>Yue, Fangyu</creatorcontrib><creatorcontrib>Zhong, Ni</creatorcontrib><creatorcontrib>Xiang, Ping‐Hua</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Duan, Chun‐Gang</creatorcontrib><creatorcontrib>Narayan, Awadhesh</creatorcontrib><creatorcontrib>Sun, Zhenrong</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><creatorcontrib>Yuan, Xiang</creatorcontrib><title>Giant Superlinear Power Dependence of Photocurrent Based on Layered Ta2NiS5 Photodetector</title><title>Advanced science</title><description>Photodetector based on two‐dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power‐dependent photoresponse and lower optoelectronic efficiency. The desirable superlinear photocurrent is mostly achieved by sophisticated 2D heterostructures or device arrays, while 2D materials rarely show intrinsic superlinear photoresponse. This work reports the giant superlinear power dependence of photocurrent based on multilayer Ta2NiS5. While the fabricated photodetector exhibits good sensitivity (3.1 mS W−1per □) and fast photoresponse (31 µs), the bias‐, polarization‐, and spatial‐resolved measurements point to an intrinsic photoconductive mechanism. By increasing the incident power density from 1.5 to 200 µW µm−2, the photocurrent power dependence varies from sublinear to superlinear. At higher illuminating conditions, prominent superlinearity is observed with a giant power exponent of γ = 1.5. The unusual photoresponse can be explained by a two‐recombination‐center model where density of states of the recombination centers (RC) effectively closes all recombination channels. The photodetector is integrated into camera for taking photos with enhanced contrast due to superlinearity. This work provides an effective route to enable higher optoelectronic efficiency at extreme conditions. 2D photodetectors generally suffer recombination processes, which result in the sublinear power dependence of photoresponse. Here, the article reports giant superlinear power dependence of photocurrent with power exponent reaching γ = 1.5 due to suppression of recombination channel. The photodetector is integrated into camera, showing enhanced imaging contrast due to the superlinearity.</description><subject>Arrays</subject><subject>Crystal structure</subject><subject>Graphene</subject><subject>high‐power sensor</subject><subject>Lasers</subject><subject>layered ternary chalcogenides</subject><subject>photoconductive detector</subject><subject>Single crystals</subject><subject>Spectrum allocation</subject><subject>Spectrum analysis</subject><subject>superlinear photoresponse</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkUtLxDAUhYMoKurWdcH1aG7eXYmOTxhUGBVchTS51UqnqWnrMP_eyojo6h64Hx8HDiGHQI-BUnbiwmd3zCjjlArgG2SXQW4m3Aix-SfvkIOue6eUguRagNkmO1wDKACzS16uK9f02XxoMdVVgy5lD3GJKbvAFpuAjccsltnDW-yjH1LCET53HYYsNtnMrTCN8dGxu2ou11TAHn0f0z7ZKl3d4cHP3SNPV5eP05vJ7P76dno2m7ScCT1xBeTKU5o7habIRZCFK0OuQHtJEWnQhQmgpSmDROMNlKzwykmveEmFQr5HTtfedigWGPzYMLnatqlauLSy0VX2_6ep3uxr_LRAucpZzkfD0Y8hxY8Bu96-xyE1Y2nLjAAtGDNypMSaWlY1rn79QO33FvZ7C_u7hT27eJ5LJTX_Am2ofoo</recordid><startdate>20230718</startdate><enddate>20230718</enddate><creator>Meng, Xianghao</creator><creator>Du, Yuhan</creator><creator>Wu, Wenbin</creator><creator>Joseph, Nesta Benno</creator><creator>Deng, Xing</creator><creator>Wang, Jinjin</creator><creator>Ma, Jianwen</creator><creator>Shi, Zeping</creator><creator>Liu, Binglin</creator><creator>Ma, Yuanji</creator><creator>Yue, Fangyu</creator><creator>Zhong, Ni</creator><creator>Xiang, Ping‐Hua</creator><creator>Zhang, Cheng</creator><creator>Duan, Chun‐Gang</creator><creator>Narayan, Awadhesh</creator><creator>Sun, Zhenrong</creator><creator>Chu, Junhao</creator><creator>Yuan, Xiang</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7065-3838</orcidid></search><sort><creationdate>20230718</creationdate><title>Giant Superlinear Power Dependence of Photocurrent Based on Layered Ta2NiS5 Photodetector</title><author>Meng, Xianghao ; Du, Yuhan ; Wu, Wenbin ; Joseph, Nesta Benno ; Deng, Xing ; Wang, Jinjin ; Ma, Jianwen ; Shi, Zeping ; Liu, Binglin ; Ma, Yuanji ; Yue, Fangyu ; Zhong, Ni ; Xiang, Ping‐Hua ; Zhang, Cheng ; Duan, Chun‐Gang ; Narayan, Awadhesh ; Sun, Zhenrong ; Chu, Junhao ; Yuan, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3247-ab196c009a6e8b94d5bafd9617c50ee0d7b8d1758fd5e8c81f2bc6a5c63f046e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Crystal structure</topic><topic>Graphene</topic><topic>high‐power sensor</topic><topic>Lasers</topic><topic>layered ternary chalcogenides</topic><topic>photoconductive detector</topic><topic>Single crystals</topic><topic>Spectrum allocation</topic><topic>Spectrum analysis</topic><topic>superlinear photoresponse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xianghao</creatorcontrib><creatorcontrib>Du, Yuhan</creatorcontrib><creatorcontrib>Wu, Wenbin</creatorcontrib><creatorcontrib>Joseph, Nesta Benno</creatorcontrib><creatorcontrib>Deng, Xing</creatorcontrib><creatorcontrib>Wang, Jinjin</creatorcontrib><creatorcontrib>Ma, Jianwen</creatorcontrib><creatorcontrib>Shi, Zeping</creatorcontrib><creatorcontrib>Liu, Binglin</creatorcontrib><creatorcontrib>Ma, Yuanji</creatorcontrib><creatorcontrib>Yue, Fangyu</creatorcontrib><creatorcontrib>Zhong, Ni</creatorcontrib><creatorcontrib>Xiang, Ping‐Hua</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Duan, Chun‐Gang</creatorcontrib><creatorcontrib>Narayan, Awadhesh</creatorcontrib><creatorcontrib>Sun, Zhenrong</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><creatorcontrib>Yuan, Xiang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xianghao</au><au>Du, Yuhan</au><au>Wu, Wenbin</au><au>Joseph, Nesta Benno</au><au>Deng, Xing</au><au>Wang, Jinjin</au><au>Ma, Jianwen</au><au>Shi, Zeping</au><au>Liu, Binglin</au><au>Ma, Yuanji</au><au>Yue, Fangyu</au><au>Zhong, Ni</au><au>Xiang, Ping‐Hua</au><au>Zhang, Cheng</au><au>Duan, Chun‐Gang</au><au>Narayan, Awadhesh</au><au>Sun, Zhenrong</au><au>Chu, Junhao</au><au>Yuan, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant Superlinear Power Dependence of Photocurrent Based on Layered Ta2NiS5 Photodetector</atitle><jtitle>Advanced science</jtitle><date>2023-07-18</date><risdate>2023</risdate><volume>10</volume><issue>20</issue><epage>n/a</epage><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Photodetector based on two‐dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power‐dependent photoresponse and lower optoelectronic efficiency. The desirable superlinear photocurrent is mostly achieved by sophisticated 2D heterostructures or device arrays, while 2D materials rarely show intrinsic superlinear photoresponse. This work reports the giant superlinear power dependence of photocurrent based on multilayer Ta2NiS5. While the fabricated photodetector exhibits good sensitivity (3.1 mS W−1per □) and fast photoresponse (31 µs), the bias‐, polarization‐, and spatial‐resolved measurements point to an intrinsic photoconductive mechanism. By increasing the incident power density from 1.5 to 200 µW µm−2, the photocurrent power dependence varies from sublinear to superlinear. At higher illuminating conditions, prominent superlinearity is observed with a giant power exponent of γ = 1.5. The unusual photoresponse can be explained by a two‐recombination‐center model where density of states of the recombination centers (RC) effectively closes all recombination channels. The photodetector is integrated into camera for taking photos with enhanced contrast due to superlinearity. This work provides an effective route to enable higher optoelectronic efficiency at extreme conditions. 2D photodetectors generally suffer recombination processes, which result in the sublinear power dependence of photoresponse. Here, the article reports giant superlinear power dependence of photocurrent with power exponent reaching γ = 1.5 due to suppression of recombination channel. The photodetector is integrated into camera, showing enhanced imaging contrast due to the superlinearity.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37116118</pmid><doi>10.1002/advs.202300413</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7065-3838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2023-07, Vol.10 (20), p.n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10369293
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Arrays
Crystal structure
Graphene
high‐power sensor
Lasers
layered ternary chalcogenides
photoconductive detector
Single crystals
Spectrum allocation
Spectrum analysis
superlinear photoresponse
title Giant Superlinear Power Dependence of Photocurrent Based on Layered Ta2NiS5 Photodetector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20Superlinear%20Power%20Dependence%20of%20Photocurrent%20Based%20on%20Layered%20Ta2NiS5%20Photodetector&rft.jtitle=Advanced%20science&rft.au=Meng,%20Xianghao&rft.date=2023-07-18&rft.volume=10&rft.issue=20&rft.epage=n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202300413&rft_dat=%3Cproquest_pubme%3E2841742285%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841742285&rft_id=info:pmid/37116118&rfr_iscdi=true