Giant Superlinear Power Dependence of Photocurrent Based on Layered Ta2NiS5 Photodetector
Photodetector based on two‐dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power‐dependent photoresponse and lower optoelectr...
Gespeichert in:
Veröffentlicht in: | Advanced science 2023-07, Vol.10 (20), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photodetector based on two‐dimensional (2D) materials is an ongoing quest in optoelectronics. 2D photodetectors are generally efficient at low illuminating power but suffer severe recombination processes at high power, which results in the sublinear power‐dependent photoresponse and lower optoelectronic efficiency. The desirable superlinear photocurrent is mostly achieved by sophisticated 2D heterostructures or device arrays, while 2D materials rarely show intrinsic superlinear photoresponse. This work reports the giant superlinear power dependence of photocurrent based on multilayer Ta2NiS5. While the fabricated photodetector exhibits good sensitivity (3.1 mS W−1per □) and fast photoresponse (31 µs), the bias‐, polarization‐, and spatial‐resolved measurements point to an intrinsic photoconductive mechanism. By increasing the incident power density from 1.5 to 200 µW µm−2, the photocurrent power dependence varies from sublinear to superlinear. At higher illuminating conditions, prominent superlinearity is observed with a giant power exponent of γ = 1.5. The unusual photoresponse can be explained by a two‐recombination‐center model where density of states of the recombination centers (RC) effectively closes all recombination channels. The photodetector is integrated into camera for taking photos with enhanced contrast due to superlinearity. This work provides an effective route to enable higher optoelectronic efficiency at extreme conditions.
2D photodetectors generally suffer recombination processes, which result in the sublinear power dependence of photoresponse. Here, the article reports giant superlinear power dependence of photocurrent with power exponent reaching γ = 1.5 due to suppression of recombination channel. The photodetector is integrated into camera, showing enhanced imaging contrast due to the superlinearity. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202300413 |