Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies

The selective pressures leading to the elaboration of downstream, integrative processing centres, such as the mammalian neocortex or insect mushroom bodies, are often unclear. In butterflies, the mushroom bodies are two to four times larger than those of their Heliconiini relatives, and the largest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2023-07, Vol.290 (2003), p.20231155-20231155
Hauptverfasser: Young, Fletcher J, Monllor, Monica, McMillan, W Owen, Montgomery, Stephen H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The selective pressures leading to the elaboration of downstream, integrative processing centres, such as the mammalian neocortex or insect mushroom bodies, are often unclear. In butterflies, the mushroom bodies are two to four times larger than those of their Heliconiini relatives, and the largest known in Lepidoptera. Heliconiini lay almost exclusively on , which exhibit a remarkable diversity of leaf shape, and it has been suggested that the mushroom body expansion of may have been driven by the cognitive demands of recognizing and learning leaf shapes of local host plants. We test this hypothesis using two complementary methods: (i) phylogenetic comparative analyses to test whether variation in mushroom body size is associated with the morphological diversity of host plants exploited across the Heliconiini; and (ii) shape-learning experiments using six Heliconiini species. We found that variation in the range of leaf morphologies used by Heliconiini was not associated with mushroom body volume. Similarly, we find interspecific differences in shape-learning ability, but are not overall better shape learners than other Heliconiini. Together these results suggest that the visual recognition and learning of host plants was not a main factor driving the diversity of mushroom body size in this tribe.
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.2023.1155