RDBridge: a knowledge graph of rare diseases based on large-scale text mining

Despite low prevalence, rare diseases affect 300 million people worldwide. Research on pathogenesis and drug development lags due to limited commercial potential, insufficient epidemiological data, and a dearth of publications. The unique characteristics of rare diseases, including limited annotated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2023-07, Vol.39 (7)
Hauptverfasser: Xing, Huadong, Zhang, Dachuan, Cai, Pengli, Zhang, Rui, Hu, Qian-Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite low prevalence, rare diseases affect 300 million people worldwide. Research on pathogenesis and drug development lags due to limited commercial potential, insufficient epidemiological data, and a dearth of publications. The unique characteristics of rare diseases, including limited annotated data, intricate processes for extracting pertinent entity relationships, and difficulties in standardizing data, represent challenges for text mining. We developed a rare disease data acquisition framework using text mining and knowledge graphs and constructed the most comprehensive rare disease knowledge graph to date, Rare Disease Bridge (RDBridge). RDBridge offers search functions for genes, potential drugs, pathways, literature, and medical imaging data that will support mechanistic research, drug development, diagnosis, and treatment for rare diseases. RDBridge is freely available at http://rdb.lifesynther.com/. Supplementary data are available at Bioinformatics online.
ISSN:1367-4811
1367-4803
1367-4811
DOI:10.1093/bioinformatics/btad440