Biochemical and Structural Characterization of CRH-1, a Carbapenemase from Chromobacterium haemolyticum Related to KPC β-Lactamases

KPC-2 is one of the most relevant serine-carbapenemases among the carbapenem-resistant We previously isolated from the environmental species Chromobacterium haemolyticum a class A CRH-1 β-lactamase displaying 69% amino acid sequence identity with KPC-2. The objective of this study was to analyze the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antimicrobial agents and chemotherapy 2023-07, Vol.67 (7), p.e0006123-e0006123
Hauptverfasser: Brunetti, Florencia, Ghiglione, Barbara, Gudeta, Dereje D, Gutkind, Gabriel, Guardabassi, Luca, Klinke, Sebastián, Power, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:KPC-2 is one of the most relevant serine-carbapenemases among the carbapenem-resistant We previously isolated from the environmental species Chromobacterium haemolyticum a class A CRH-1 β-lactamase displaying 69% amino acid sequence identity with KPC-2. The objective of this study was to analyze the kinetic behavior and crystallographic structure of this β-lactamase. Our results showed that CRH-1 can hydrolyze penicillins, cephalosporins (except ceftazidime), and carbapenems with similar efficacy compared to KPC-2. Inhibition kinetics showed that CRH-1 is not well inhibited by clavulanic acid, in contrast to efficient inhibition by avibactam (AVI). The high-resolution crystal of the apoenzyme showed that CRH-1 has a similar folding compared to other class A β-lactamases. The CRH-1/AVI complex showed that AVI adopts a chair conformation, stabilized by hydrogen bonds to Ser70, Ser237, Asn132, and Thr235. Our findings highlight the biochemical and structural similarities of CRH-1 and KPC-2 and the potential clinical impact of this carbapenemase in the event of recruitment by pathogenic bacterial species.
ISSN:0066-4804
1098-6596
DOI:10.1128/aac.00061-23