Preparation of MoS2 Nanospheres using a Hydrothermal Method and Their Application as Ammonia Gas Sensors Based on Delay Line Surface Acoustic Wave Devices
An ammonia sensor based on a delay-line surface acoustic wave (SAW) device is developed in this study by coating the delay line area of the device with a nano-structured molybdenum disulfide (MoS2) sensitive material. A SAW device of 122 MHz was designed and fabricated with a pair of interdigital tr...
Gespeichert in:
Veröffentlicht in: | Materials 2023-06, Vol.16 (13), p.4703 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An ammonia sensor based on a delay-line surface acoustic wave (SAW) device is developed in this study by coating the delay line area of the device with a nano-structured molybdenum disulfide (MoS2) sensitive material. A SAW device of 122 MHz was designed and fabricated with a pair of interdigital transducers (IDTs) defined on a 128° y-cut LiNbO3 substrate using photolithography technologies, and the aluminum IDT electrodes were deposited by a DC magnetron sputtering system. By adjusting the pH values of precursor solutions, molybdenum disulfide (MoS2) nanospheres were prepared with various structures using a hydrothermal method. Finally, an NH3 gas sensor with high sensitivity of 4878 Hz/ppm, operating at room temperature, was successfully obtained. The excellent sensitivity performance may be due to the efficient adsorption of NH3 gas molecules on the surfaces of the nanoflower-like MoS2, which has a larger specific surface area and provides more active sites, and results in a larger change in the resonant frequency of the device due to the mass loading effect. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16134703 |