Loss-free tensile ductility of dual-structure titanium composites via an interdiffusion and self-organization strategy

The deformation-coordination ability between ductile metal and brittle dispersive ceramic particles is poor, which means that an improvement in strength will inevitably sacrifice ductility in dispersion-strengthened metallic materials. Here, we present an inspired strategy for developing dual-struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-07, Vol.120 (28), p.e2302234120-e2302234120
Hauptverfasser: Liu, Lei, Li, Shufeng, Pan, Deng, Hui, Dongxu, Zhang, Xin, Li, Bo, Liang, Tianshou, Shi, Pengpeng, Bahador, Abdollah, Umeda, Junko, Kondoh, Katsuyoshi, Li, Shaolong, Gao, Lina, Wang, Zhimao, Li, Gang, Zhang, Shuyan, Wang, Ruihong, Chen, Wenge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The deformation-coordination ability between ductile metal and brittle dispersive ceramic particles is poor, which means that an improvement in strength will inevitably sacrifice ductility in dispersion-strengthened metallic materials. Here, we present an inspired strategy for developing dual-structure-based titanium matrix composites (TMCs) that achieve 12.0% elongation comparable to the matrix Ti6Al4V alloys and enhanced strength compared to homostructure composites. The proposed dual-structure comprises a primary structure, namely, a TiB whisker-rich region engendered fine grain Ti6Al4V matrix with a three-dimensional micropellet architecture (3D-MPA), and an overall structure consisting of evenly distributed 3D-MPA "reinforcements" and a TiBw-lean titanium matrix. The dual structure presents a spatially heterogeneous grain distribution with 5.8 μm fine grains and 42.3 μm coarse grains, which exhibits excellent hetero-deformation-induced (HDI) hardening and achieves a 5.8% ductility. Interestingly, the 3D-MPA "reinforcements" show 11.1% isotropic deformability and 66% dislocation storage, which endows the TMCs with good strength and loss-free ductility. Our enlightening method uses an interdiffusion and self-organization strategy based on powder metallurgy to enable metal matrix composites with the heterostructure of the matrix and the configuration of reinforcement to address the strength-ductility trade-off dilemma.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2302234120