Beyond the Status Quo: Density Functional Tight Binding and Neural Network Potentials as a Versatile Simulation Strategy to Characterize Host–Guest Interactions in Metal- and Covalent Organic Frameworks

In recent years, research focused on synthesis, characterization, and application of metal–organic frameworks (MOFs) has attracted increased interest, from both an experimental as well as a theoretical perspective. Self-consistent charge density functional tight binding (SCC DFTB) in conjunction wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-07, Vol.14 (26), p.6018-6027
Hauptverfasser: Hofer, Thomas S., Listyarini, Risnita Vicky, Hajdarevic, Emir, Maier, Lukas, Purtscher, Felix R. S., Gamper, Jakob, Hanser, Friedrich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, research focused on synthesis, characterization, and application of metal–organic frameworks (MOFs) has attracted increased interest, from both an experimental as well as a theoretical perspective. Self-consistent charge density functional tight binding (SCC DFTB) in conjunction with a suitable constrained molecular dynamics (MD) simulation protocol provides a versatile and flexible platform for the study of pristine MOFs as well as guest@MOF systems. Although being a semi-empirical quantum mechanical method, SCC DFTB inherently accounts for polarization and many-body contributions, which may become a limiting factor in purely force field-based simulation studies. A number of examples such as CO2, indigo, and drug molecules embedded in various MOF hosts are discussed to highlight the capabilities of the presented simulation approach. Furthermore, a promising extension of the outlined simulation strategy toward the treatment of covalent organic frameworks utilizing state-of-the-art neural network potentials providing a description at DFT accuracy and force field cost is outlined.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.3c00941