Learning feature descriptors for pre- and intra-operative point cloud matching for laparoscopic liver registration
Purpose In laparoscopic liver surgery, preoperative information can be overlaid onto the intra-operative scene by registering a 3D preoperative model to the intra-operative partial surface reconstructed from the laparoscopic video. To assist with this task, we explore the use of learning-based featu...
Gespeichert in:
Veröffentlicht in: | International journal for computer assisted radiology and surgery 2023-06, Vol.18 (6), p.1025-1032 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
In laparoscopic liver surgery, preoperative information can be overlaid onto the intra-operative scene by registering a 3D preoperative model to the intra-operative partial surface reconstructed from the laparoscopic video. To assist with this task, we explore the use of learning-based feature descriptors, which, to our best knowledge, have not been explored for use in laparoscopic liver registration. Furthermore, a dataset to train and evaluate the use of learning-based descriptors does not exist.
Methods
We present the LiverMatch dataset consisting of 16 preoperative models and their simulated intra-operative 3D surfaces. We also propose the LiverMatch network designed for this task, which outputs per-point feature descriptors, visibility scores, and matched points.
Results
We compare the proposed LiverMatch network with a network closest to LiverMatch and a histogram-based 3D descriptor on the testing split of the LiverMatch dataset, which includes two unseen preoperative models and 1400 intra-operative surfaces. Results suggest that our LiverMatch network can predict more accurate and dense matches than the other two methods and can be seamlessly integrated with a RANSAC-ICP-based registration algorithm to achieve an accurate initial alignment.
Conclusion
The use of learning-based feature descriptors in laparoscopic liver registration (LLR) is promising, as it can help achieve an accurate initial rigid alignment, which, in turn, serves as an initialization for subsequent non-rigid registration. |
---|---|
ISSN: | 1861-6429 1861-6410 1861-6429 |
DOI: | 10.1007/s11548-023-02893-3 |