Recent progress on the role of cellular communication network factors (CCN) 3, 4 and 6 in regulating adiposity, liver fibrosis and pancreatic islets

CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell communication and signaling 2023-06, Vol.17 (2), p.297-306
Hauptverfasser: Xega, Viktoria, Alami, Tara, Liu, Jun-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades, metabolic regulation by these matricellular proteins has been studied extensively, several excellent reviews have covered the roles of CCN1, -2 and − 5. In this brief review, we will focus on those lesser-known members and more recent discoveries, together with other recent articles presenting a more complete picture of the current state of knowledge. We have found that CCN2, -4, and − 5 promote pancreatic islet function, while CCN3 plays a unique and negative role. CCN3 and − 4 are pro-adiposity leading to insulin resistance, but CCN5 and − 6 are anti-adiposity. While CCN2 and − 4 promote tissue fibrosis and inflammation, all other four members are clearly anti-fibrotic. As for cellular signaling, they are known to interact with integrins, other cell membrane proteins and ECM thereby regulate Akt/protein kinase B, myocardin-related transcription factor (MRTF), and focal adhesion kinase. Yet, a cohesive mechanism of action to comprehensively explain those major functions is still lacking.
ISSN:1873-9601
1873-961X
DOI:10.1007/s12079-023-00765-8