One-Pot Biosynthesis of Carbon-Coated Silver Nanoparticles Using Palm Leaves as a Reductant and a Carbon Source

In this study, carbon-coated silver nanoparticles (Ag@C NPs) were synthesized with a one-pot hydrothermal method using palm leaves as a reductant and a carbon source. SEM, TEM, XRD, Raman, and UV–vis analyses were employed to characterize the as-prepared Ag@C NPs. Results showed that the diameter of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-07, Vol.8 (26), p.23607-23612
Hauptverfasser: Jian, Xuchao, Wang, Ying, Zhu, Rukang, Pan, Yingying, Ye, Huangqing, Zeng, Xiping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, carbon-coated silver nanoparticles (Ag@C NPs) were synthesized with a one-pot hydrothermal method using palm leaves as a reductant and a carbon source. SEM, TEM, XRD, Raman, and UV–vis analyses were employed to characterize the as-prepared Ag@C NPs. Results showed that the diameter of silver nanoparticles (Ag NPs) and the coating thickness could be controlled by changing the amount of biomass and the reaction temperature. The diameter ranged from 68.33 to 143.15 nm, while the coating thickness ranged from 1.74 to 4.70 nm. As the biomass amount and the reaction temperature increased, the diameter of Ag NPs and the coating thickness became larger. Thus, this work provided a green, simple, and feasible method for the preparation of metal nanocrystals.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c01554