Biochemical characterization of the RNA-binding and RNA-DNA strand exchange activities of the human RAD52 protein

RAD52 is a single-stranded DNA (ssDNA) binding protein that functions in the repair of DNA double-strand breaks (DSBs) by promoting the annealing of complementary DNA strands. RAD52 may also play an important role in an RNA transcript-dependent type of DSB repair, in which it reportedly binds to RNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biochemistry (Tokyo) 2023-06, Vol.174 (1), p.59-69
Hauptverfasser: Tsuchiya, Ryohei, Saotome, Mika, Kinoshita, Chiaki, Kamoi, Kazuki, Kagawa, Wataru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RAD52 is a single-stranded DNA (ssDNA) binding protein that functions in the repair of DNA double-strand breaks (DSBs) by promoting the annealing of complementary DNA strands. RAD52 may also play an important role in an RNA transcript-dependent type of DSB repair, in which it reportedly binds to RNA and mediates the RNA-DNA strand exchange reaction. However, the mechanistic details of these functions are still unclear. In the present study, we utilized the domain fragments of RAD52 to biochemically characterize the single-stranded RNA (ssRNA) binding and RNA-DNA strand exchange activities of RAD52. We found that the N-terminal half of RAD52 is primarily responsible for both activities. By contrast, significant differences were observed for the roles of the C-terminal half in RNA-DNA and DNA-DNA strand exchange reactions. The C-terminal fragment stimulated the inverse RNA-DNA strand exchange activity displayed by the N-terminal fragment in trans, whereas the trans stimulatory effect by the C-terminal fragment was not observed in the inverse DNA-DNA or forward RNA-DNA strand exchange reactions. These results suggest the specific function of the C-terminal half of RAD52 in RNA-templated DSB repair.
ISSN:0021-924X
1756-2651
DOI:10.1093/jb/mvad019