Reliable Gas Phase Reaction Rates at Affordable Cost by Means of the Parameter-Free JunChS-F12 Model Chemistry
A recently developed strategy for the computation at affordable cost of reliable barrier heights ruling reactions in the gas phase (junChS, [Barone, V.; J. Chem. Theory Comput. 2021, 17, 4913−4928 ]) has been extended to the employment of explicitly correlated (F12) methods. A thorough benchmark bas...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2023-06, Vol.19 (12), p.3526-3537 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A recently developed strategy for the computation at affordable cost of reliable barrier heights ruling reactions in the gas phase (junChS, [Barone, V.; J. Chem. Theory Comput. 2021, 17, 4913−4928 ]) has been extended to the employment of explicitly correlated (F12) methods. A thorough benchmark based on a wide range of prototypical reactions shows that the new model (referred to as junChS-F12), which employs cost-effective revDSD-PBEP86-D3(BJ) reference geometries, has an improved performance with respect to its conventional counterpart and outperforms the most well-known model chemistries without the need of any empirical parameter and at an affordable computational cost. Several benchmarks show that revDSD-PBEP86-D3(BJ) structures and force fields provide zero point energies and thermal contributions, which can be confidently used, together with junChS-F12 electronic energies, for obtaining accurate reaction rates in the framework of the master equation approach based on the ab initio transition-state theory. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.3c00343 |