Shear Wave Dispersion in Chronic Liver Disease: From Physical Principles to Clinical Usefulness
The development of new applications in ultrasound (US) imaging in recent years has strengthened the role of this imaging technique in the management of different pathologies, particularly in the setting of liver disease. Improved B-mode imaging (3D and 4D), contrast-enhanced US (CEUS) and especially...
Gespeichert in:
Veröffentlicht in: | Journal of personalized medicine 2023-06, Vol.13 (6), p.945 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of new applications in ultrasound (US) imaging in recent years has strengthened the role of this imaging technique in the management of different pathologies, particularly in the setting of liver disease. Improved B-mode imaging (3D and 4D), contrast-enhanced US (CEUS) and especially US-based elastography techniques have created the concept of multiparametric ultrasound (MP-US), a term borrowed from radiological sectional imaging. Among the new elastography techniques, shear wave dispersion is a newly developed imaging technology which enables the assessment of the shear waves' dispersion slope. The analysis of the dispersion qualities of shear waves might be indirectly related to the tissue viscosity, thus providing biomechanical information concerning the pathologic state of the liver such as necroinflammation. Some of the most recent US devices have been embedded with software that evaluate the dispersion of shear waves/liver viscosity. In this review, the feasibility and the clinical applications of liver viscosity are reviewed based on the preliminary findings of both animal and human studies. |
---|---|
ISSN: | 2075-4426 2075-4426 |
DOI: | 10.3390/jpm13060945 |