Electrocardiogram Changes in the Postictal Phase of Epileptic Seizure: Results from a Prospective Study

The brain and heart are strictly linked and the electrical physiologies of these organs share common pathways and genes. Epilepsy patients have a higher prevalence of electrocardiogram (ECG) abnormalities compared to healthy people. Furthermore, the relationship between epilepsy, genetic arrhythmic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2023-06, Vol.12 (12), p.4098
Hauptverfasser: Gigli, Lorenzo, Sala, Simone, Preda, Alberto, Okubo, Kenji, Peretto, Giovanni, Frontera, Antonio, Varrenti, Marisa, Baroni, Matteo, Carbonaro, Marco, Vargiu, Sara, Di Resta, Chiara, Striano, Pasquale, Mazzone, Patrizio, Della Bella, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The brain and heart are strictly linked and the electrical physiologies of these organs share common pathways and genes. Epilepsy patients have a higher prevalence of electrocardiogram (ECG) abnormalities compared to healthy people. Furthermore, the relationship between epilepsy, genetic arrhythmic diseases and sudden death is well known. The association between epilepsy and myocardial channelopathies, although already proposed, has not yet been fully demonstrated. The aim of this prospective observational study is to assess the role of the ECG after a seizure. From September 2018 to August 2019, all patients admitted to the emergency department of San Raffaele Hospital with a seizure were enrolled in the study; for each patient, neurological, cardiological and ECG data were collected. The ECG was performed at the time of the admission (post-ictal ECG) and 48 h later (basal ECG) and analyzed by two blinded expert cardiologists looking for abnormalities known to indicate channelopathies or arrhythmic cardiomyopathies. In all patients with abnormal post-ictal ECG, next generation sequencing (NGS) analysis was performed. One hundred and seventeen patients were enrolled (females: 45, median age: 48 ± 12 years). There were 52 abnormal post-ictal ECGs and 28 abnormal basal ECGs. All patients with an abnormal basal ECG also had an abnormal post-ictal ECG. In abnormal post-ictal ECG, a Brugada ECG pattern (BEP) was found in eight patients (of which two had BEP type I) and confirmed in two basal ECGs (of which zero had BEP type I). An abnormal QTc interval was identified in 20 patients (17%), an early repolarization pattern was found in 4 patients (3%) and right precordial abnormalities were found in 5 patients (4%). Any kind modification of post-ictal ECG was significantly more pronounced in comparison with an ECG recorded far from the seizure ( = 0.003). A 10:1 higher prevalence of a BEP of any type (particularly in post-ictal ECG, = 0.04) was found in our population compared to general population. In three patients with post-ictal ECG alterations diagnostic for myocardial channelopathy (BrS and ERP), not confirmed at basal ECG, a pathogenic gene variant was identified (KCNJ8, PKP2 and TRMP4). The 12-lead ECG after an epileptic seizure may show disease-related alterations otherwise concealed in a population at a higher incidence of sudden death and channelopathies. Post-ictal BEP incidence was higher in cases of nocturnal seizure.
ISSN:2077-0383
2077-0383
DOI:10.3390/jcm12124098