External Validation and Retraining of DeepBleed: The First Open-Source 3D Deep Learning Network for the Segmentation of Spontaneous Intracerebral and Intraventricular Hemorrhage

The objective of this study was to assess the performance of the first publicly available automated 3D segmentation for spontaneous intracerebral hemorrhage (ICH) based on a 3D neural network before and after retraining. We performed an independent validation of this model using a multicenter retros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2023-06, Vol.12 (12), p.4005
Hauptverfasser: Cao, Haoyin, Morotti, Andrea, Mazzacane, Federico, Desser, Dmitriy, Schlunk, Frieder, Güttler, Christopher, Kniep, Helge, Penzkofer, Tobias, Fiehler, Jens, Hanning, Uta, Dell'Orco, Andrea, Nawabi, Jawed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study was to assess the performance of the first publicly available automated 3D segmentation for spontaneous intracerebral hemorrhage (ICH) based on a 3D neural network before and after retraining. We performed an independent validation of this model using a multicenter retrospective cohort. Performance metrics were evaluated using the dice score (DSC), sensitivity, and positive predictive values (PPV). We retrained the original model (OM) and assessed the performance via an external validation design. A multivariate linear regression model was used to identify independent variables associated with the model's performance. Agreements in volumetric measurements and segmentation were evaluated using Pearson's correlation coefficients (r) and intraclass correlation coefficients (ICC), respectively. With 1040 patients, the OM had a median DSC, sensitivity, and PPV of 0.84, 0.79, and 0.93, compared to thoseo f 0.83, 0.80, and 0.91 in the retrained model (RM). However, the median DSC for infratentorial ICH was relatively low and improved significantly after retraining, at < 0.001. ICH volume and location were significantly associated with the DSC, at < 0.05. The agreement between volumetric measurements (r > 0.90, > 0.05) and segmentations (ICC ≥ 0.9, < 0.001) was excellent. The model demonstrated good generalization in an external validation cohort. Location-specific variances improved significantly after retraining. External validation and retraining are important steps to consider before applying deep learning models in new clinical settings.
ISSN:2077-0383
2077-0383
DOI:10.3390/jcm12124005