Male Akita mice develop signs of bladder underactivity independent of NLRP3 as a result of a decrease in neurotransmitter release from efferent neurons

Diabetic bladder dysfunction (DBD) is a prevalent diabetic complication that is recalcitrant to glucose control. Using the Akita mouse model (type 1) bred to be NLR family pyrin domain containing 3 (NLRP3) or NLRP3 , we have previously found that females (mild hyperglycemia) progress from an overact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2023-07, Vol.325 (1), p.F61-F72
Hauptverfasser: Hughes, Jr, Francis M, Allkanjari, Armand, Odom, Michael R, Mulcrone, Jack E, Jin, Huixia, Purves, J Todd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetic bladder dysfunction (DBD) is a prevalent diabetic complication that is recalcitrant to glucose control. Using the Akita mouse model (type 1) bred to be NLR family pyrin domain containing 3 (NLRP3) or NLRP3 , we have previously found that females (mild hyperglycemia) progress from an overactive to underactive bladder phenotype and that this progression was dependent on NLRP3-induced inflammation. Here, we examined DBD in the male Akita mouse (severe hyperglycemia) and found by urodynamics only a compensated underactive-like phenotype (increased void volume and decreased frequency but unchanged efficiency). Surprisingly, this phenotype was still present in the NLRP3 strain and so was not dependent on NLRP3 inflammasome-induced inflammation. To examine the cause of the compensated underactive-like phenotype, we assessed overall nerve bundle density and afferent nerve bundles (Aδ-fibers). Both were decreased in density during diabetes, but denervation was absent in the diabetic NLRP3 strain so it was deemed unlikely to cause the underactive-like symptoms. Changes in bladder smooth muscle contractility to cell depolarization and receptor activation were also not responsible as KCl (depolarizing agent), carbachol (muscarinic agonist), and α,β-methylene-ATP (purinergic agonist) elicited equivalent contractions in denuded bladder strips in all groups. However, electrical field stimulation revealed a diabetes-induced decrease in contractility that was not blocked in the NLRP3 strain, suggesting that the bladder compensated underactive-like phenotype in the male Akita mouse is likely through a decrease in efferent neurotransmitter release. In this study, we show that diabetic bladder dysfunction (the most common diabetic complication) manifests through different mechanisms that may be related to severity of hyperglycemia and/or sex. Male Akita mice, which have severe hyperglycemia, develop bladder underactivity as a result of a decrease in efferent neurotransmitter release that is independent of inflammation. This contrasts with females, who have milder hyperglycemia, where diabetic bladder dysfunction progresses from overactivity to underactivity in an inflammation-dependent manner.
ISSN:1931-857X
1522-1466
1522-1466
DOI:10.1152/ajprenal.00284.2022