Two-Dimensional Self-Assembly Driven by Intermolecular Hydrogen Bonding in Benzodi-7-azaindole Molecules on Au(111)
The control of molecular structures at the nanoscale plays a critical role in the development of materials and applications. The adsorption of a polyheteroaromatic molecule with hydrogen bond donor and acceptor sites integrated in the conjugated structure itself, namely, benzodi-7-azaindole (BDAI),...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2023-06, Vol.127 (24), p.11591-11599 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The control of molecular structures at the nanoscale plays a critical role in the development of materials and applications. The adsorption of a polyheteroaromatic molecule with hydrogen bond donor and acceptor sites integrated in the conjugated structure itself, namely, benzodi-7-azaindole (BDAI), has been studied on Au(111). Intermolecular hydrogen bonding determines the formation of highly organized linear structures where surface chirality, resulting from the 2D confinement of the centrosymmetric molecules, is observed. Moreover, the structural features of the BDAI molecule lead to the formation of two differentiated arrangements with extended brick-wall and herringbone packing. A comprehensive experimental study that combines scanning tunneling microscopy, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory theoretical calculations has been performed to fully characterize the 2D hydrogen-bonded domains and the on-surface thermal stability of the physisorbed material. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.3c01640 |