System for Patterning Polydopamine and VAPG Peptide on Polytetrafluoroethylene and Biodegradable Polyesters for Patterned Growth of Smooth Muscle Cells In Vitro

Biomaterial’s surface functionalization for selective adhesion and patterned cell growth remains essential in developing novel implantable medical devices for regenerative medicine applications. We built and applied a 3D-printed microfluidic device to fabricate polydopamine (PDA) patterns on the sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-06, Vol.8 (24), p.22055-22066
Hauptverfasser: Kopeć, Kamil, Podgórski, Rafał, Ciach, Tomasz, Wojasiński, Michał
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomaterial’s surface functionalization for selective adhesion and patterned cell growth remains essential in developing novel implantable medical devices for regenerative medicine applications. We built and applied a 3D-printed microfluidic device to fabricate polydopamine (PDA) patterns on the surface of polytetrafluoroethylene (PTFE), poly­(l-lactic acid-co-D,l-lactic acid) (PLA), and poly­(lactic acid-co-glycolic acid) (PLGA). Then, we covalently attached the Val-Ala-Pro-Gly (VAPG) peptide to the created PDA pattern to promote the adhesion of the smooth muscle cells (SMCs). We proved that the fabrication of PDA patterns allows for the selective adhesion of mouse fibroblast and human SMCs to PDA-patterned surfaces after only 30 min of in vitro cultivation. After 7 days of SMC culture, we observed the proliferation of cells only along the patterns on PTFE but over the entire surface of the PLA and PLGA, regardless of patterning. This means that the presented approach is beneficial for application to materials resistant to cell adhesion and proliferation. The additional attachment of the VAPG peptide to the PDA patterns did not bring measurable benefits due to the high increase in adhesion and patterned cell proliferation by PDA itself.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c02114