Highly-specific aptamer targeting SARS-CoV-2 S1 protein screened on an automatic integrated microfluidic system for COVID-19 diagnosis
Variants of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) have evolved such that it may be challenging for diagnosis and clinical treatment of the pandemic coronavirus disease-19 (COVID-19). Compared with developed SARS-CoV-2 diagnostic tools recently, aptamers may exhibit some adva...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2023-09, Vol.1274, p.341531-341531, Article 341531 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Variants of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) have evolved such that it may be challenging for diagnosis and clinical treatment of the pandemic coronavirus disease-19 (COVID-19). Compared with developed SARS-CoV-2 diagnostic tools recently, aptamers may exhibit some advantages, including high specificity/affinity, longer shelf life (vs. antibodies), and could be easily prepared. Herein an integrated microfluidic system was developed to automatically carry out one novel screening process based on the systematic evolution of ligands by exponential enrichment (SELEX) for screening aptamers specific with SARS-CoV-2. The new screening process started with five rounds of positive selection (with the S1 protein of SARS-CoV-2). In addition, including non-target viruses (influenza A and B), human respiratory tract-related cancer cells (adenocarcinoma human alveolar basal epithelial cells and dysplastic oral keratinocytes), and upper respiratory tract-related infectious bacteria (including methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae), and human saliva were involved to increase the specificity of the screened aptamer during the negative selection. Totally, all 10 rounds could be completed within 20 h. The dissociation constant of the selected aptamer was determined to be 63.0 nM with S1 protein. Limits of detection for Wuhan and Omicron clinical strains were found to be satisfactory for clinical applications (i.e. 4.80 × 101 and 1.95 × 102 copies/mL, respectively). Moreover, the developed aptamer was verified to be capable of capturing inactivated SARS-CoV-2 viruses, eight SARS-CoV-2 pseudo-viruses, and clinical isolates of SARS-CoV-2 viruses. For high-variable emerging viruses, this developed integrated microfluidic system can be used to rapidly select highly-specific aptamers based on the novel SELEX methods to deal with infectious diseases in the future.
An integrated, automatic microfluidic device for screening of aptamers against SARS-CoV-2 S1 proteins was developed. The screened aptamer with a high affinity and specificity was capable to SARS-CoV-2 viruses and could be used for diagnosis of COVID-19. [Display omitted]
•An integrated microfluidic system was developed to automatically carry out screening of aptamers specific to SARS-CoV-2.•All 10 rounds could be completed within 20 h.•Limits of detection for Wuhan and Omicron viral strains were found to be 4.8 |
---|---|
ISSN: | 0003-2670 1873-4324 |
DOI: | 10.1016/j.aca.2023.341531 |