Slow evolution of Europa's interior: metamorphic ocean origin, delayed metallic core formation, and limited seafloor volcanism

Europa's ocean lies atop an interior made of metal and silicates. On the basis of gravity data from the Galileo mission, many argued that Europa's interior, like Earth, is differentiated into a metallic core and a mantle composed of anhydrous silicates. Some studies further assumed that Eu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-06, Vol.9 (24), p.eadf3955-eadf3955
Hauptverfasser: Trinh, Kevin T, Bierson, Carver J, O'Rourke, Joseph G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Europa's ocean lies atop an interior made of metal and silicates. On the basis of gravity data from the Galileo mission, many argued that Europa's interior, like Earth, is differentiated into a metallic core and a mantle composed of anhydrous silicates. Some studies further assumed that Europa differentiated while (or soon after) it accreted, also like Earth. However, Europa probably formed at much colder temperatures, meaning that Europa plausibly ended accretion as a mixture containing water-ice and/or hydrated silicates. Here, we use numerical models to describe the thermal evolution of Europa's interior assuming low initial temperatures (~200 to 300 kelvin). We find that silicate dehydration can produce Europa's current ocean and icy shell. Rocks below the seafloor may remain cool and hydrated today. Europa's metallic core, if it exists, may have formed billions of years after accretion. Ultimately, we expect the chemistry of Europa's ocean to reflect protracted heating of the interior.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adf3955