Combining virtual screening with cis-/trans-cleavage enzymatic assays effectively reveals broad-spectrum inhibitors that target the main proteases of SARS-CoV-2 and MERS-CoV
The main protease (Mpro) of SARS-CoV-2 is essential for viral replication, which suggests that the Mpro is a critical target in the development of small molecules to treat COVID-19. This study used an in-silico prediction approach to investigate the complex structure of SARS-CoV-2 Mpro in compounds...
Gespeichert in:
Veröffentlicht in: | Antiviral research 2023-08, Vol.216, p.105653, Article 105653 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main protease (Mpro) of SARS-CoV-2 is essential for viral replication, which suggests that the Mpro is a critical target in the development of small molecules to treat COVID-19. This study used an in-silico prediction approach to investigate the complex structure of SARS-CoV-2 Mpro in compounds from the United States National Cancer Institute (NCI) database, then validate potential inhibitory compounds against the SARS-CoV-2 Mpro in cis- and trans-cleavage proteolytic assays. Virtual screening of ∼280,000 compounds from the NCI database identified 10 compounds with highest site-moiety map scores. Compound NSC89640 (coded C1) showed marked inhibitory activity against the SARS-CoV-2 Mpro in cis-/trans-cleavage assays. C1 strongly inhibited SARS-CoV-2 Mpro enzymatic activity, with a half maximal inhibitory concentration (IC50) of 2.69 μM and a selectivity index (SI) of >74.35. The C1 structure served as a template to identify structural analogs based on AtomPair fingerprints to refine and verify structure-function associations. Mpro-mediated cis-/trans-cleavage assays conducted with the structural analogs revealed that compound NSC89641 (coded D2) exhibited the highest inhibitory potency against SARS-CoV-2 Mpro enzymatic activity, with an IC50 of 3.05 μM and a SI of >65.57. Compounds C1 and D2 also displayed inhibitory activity against MERS-CoV-2 with an IC50 of 74.35.•C1 structural analogs NSC89641 and NSC96435 also inhibited MERS-CoV Mpro, with IC50 values of |
---|---|
ISSN: | 0166-3542 1872-9096 1872-9096 |
DOI: | 10.1016/j.antiviral.2023.105653 |