Lipid packing is disrupted in copolymeric nanodiscs compared with intact membranes

Discoidal lipid-protein nanoparticles known as nanodiscs are widely used tools in structural and membrane biology. Amphipathic, synthetic copolymers have recently become an attractive alternative to membrane scaffold proteins for the formation of nanodiscs. Such copolymers can directly intercalate i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2023-06, Vol.122 (11), p.2256-2266
Hauptverfasser: Real Hernandez, Luis M., Levental, Ilya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discoidal lipid-protein nanoparticles known as nanodiscs are widely used tools in structural and membrane biology. Amphipathic, synthetic copolymers have recently become an attractive alternative to membrane scaffold proteins for the formation of nanodiscs. Such copolymers can directly intercalate into, and form nanodiscs from, intact membranes without detergents. Although these copolymer nanodiscs can extract native membrane lipids, it remains unclear whether native membrane properties are also retained. To determine the extent to which bilayer lipid packing is retained in nanodiscs, we measured the behavior of packing-sensitive fluorescent dyes in various nanodisc preparations compared with intact lipid bilayers. We analyzed styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and polymethacrylate (PMA) as nanodisc scaffolds at various copolymer-to-lipid ratios and temperatures. Measurements of Laurdan spectral shifts revealed that dimyristoyl-phosphatidylcholine (DMPC) nanodiscs had increased lipid headgroup packing compared with large unilamellar vesicles (LUVs) above the lipid melting temperature for all three copolymers. Similar effects were observed for DMPC nanodiscs stabilized by membrane scaffolding protein MSP1E1. Increased lipid headgroup packing was also observed when comparing nanodiscs with intact membranes composed of binary mixtures of 1-palmitoyl-2-oleoyl-phosphocholine (POPC) and di-palmitoyl-phosphocholine (DPPC), which show fluid-gel-phase coexistence. Similarly, Laurdan reported increased headgroup packing in nanodiscs for biomimetic mixtures containing cholesterol, most notable for relatively disordered membranes. The magnitudes of these ordering effects were not identical for the various copolymers, with SMA being the most and DIBMA being the least perturbing. Finally, nanodiscs derived from mammalian cell membranes showed similarly increased lipid headgroup packing. We conclude that nanodiscs generally do not completely retain the physical properties of intact membranes.
ISSN:0006-3495
1542-0086
1542-0086
DOI:10.1016/j.bpj.2023.01.013