Distorted neurocomputation by a small number of extra-large spines in psychiatric disorders

Human genetics strongly support the involvement of synaptopathy in psychiatric disorders. However, trans-scale causality linking synapse pathology to behavioral changes is lacking. To address this question, we examined the effects of synaptic inputs on dendrites, cells, and behaviors of mice with kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-06, Vol.9 (23), p.eade5973
Hauptverfasser: Obi-Nagata, Kisho, Suzuki, Norimitsu, Miyake, Ryuhei, MacDonald, Matthew L, Fish, Kenneth N, Ozawa, Katsuya, Nagahama, Kenichiro, Okimura, Tsukasa, Tanaka, Shoji, Kano, Masanobu, Fukazawa, Yugo, Sweet, Robert A, Hayashi-Takagi, Akiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human genetics strongly support the involvement of synaptopathy in psychiatric disorders. However, trans-scale causality linking synapse pathology to behavioral changes is lacking. To address this question, we examined the effects of synaptic inputs on dendrites, cells, and behaviors of mice with knockdown of SETD1A and DISC1, which are validated animal models of schizophrenia. Both models exhibited an overrepresentation of extra-large (XL) synapses, which evoked supralinear dendritic and somatic integration, resulting in increased neuronal firing. The probability of XL spines correlated negatively with working memory, and the optical prevention of XL spine generation restored working memory impairment. Furthermore, XL synapses were more abundant in the postmortem brains of patients with schizophrenia than in those of matched controls. Our findings suggest that working memory performance, a pivotal aspect of psychiatric symptoms, is shaped by distorted dendritic and somatic integration via XL spines.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.ade5973