Fused Filament Fabricated Poly(lactic acid) Parts Reinforced with Short Carbon Fiber and Graphene Nanoparticles with Improved Tribological Properties
This study investigated the mechanical and tribological properties of 3D-printed Poly (lactic acid) (PLA) composites reinforced with different concentrations of carbon fibers (SCF) and graphene nanoparticles (GNP) (0.5 to 5 wt.% of each filler). The samples were produced using FFF (fused filament fa...
Gespeichert in:
Veröffentlicht in: | Polymers 2023-05, Vol.15 (11), p.2451 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated the mechanical and tribological properties of 3D-printed Poly (lactic acid) (PLA) composites reinforced with different concentrations of carbon fibers (SCF) and graphene nanoparticles (GNP) (0.5 to 5 wt.% of each filler). The samples were produced using FFF (fused filament fabrication) 3D printing. The results showed a good dispersion of the fillers in the composites. SCF and GNP promoted the crystallization of the PLA filaments. The hardness, elastic modulus, and specific wear resistance grew with the increase in the filler concentration. A hardness improvement of about 30% was observed for the composite with 5 wt.% of SCF + 5 wt.% GNP (PSG-5) compared to PLA. The same trend was observed for the elastic modulus with an increase of 220%. All the composites presented lower coefficients of friction (0.49 to 0.6) than PLA (0.71). The composite PSG-5 sample showed the lowest value of specific wear rate (4.04 × 10
mm
/N.m), corresponding to about a five times reduction compared to PLA. Therefore, it was concluded that the addition of GNP and SCF to PLA made it possible to obtain composites with better mechanical and tribological behavior. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15112451 |