Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage

Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3'-OH and 5'-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2000-02, Vol.28 (3), p.720-727
Hauptverfasser: Warnecke, J M, Sontheimer, E J, Piccirilli, J A, Hartmann, R K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 727
container_issue 3
container_start_page 720
container_title Nucleic acids research
container_volume 28
creator Warnecke, J M
Sontheimer, E J
Piccirilli, J A
Hartmann, R K
description Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3'-OH and 5'-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3'-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3'- S -phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3'- S -phosphorothiolate-modified ptRNA carrying a 7 nt 5'-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5'-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn(2+)or Cd(2+). To suppress aberrant cleavage, we also constructed a 3'- S -phosphorothiolate-modified ptRNA with a 1 nt 5'-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3'- S -phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.
doi_str_mv 10.1093/nar/28.3.720
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_102553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>374105141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-82ad33e84431c4b366aa3bd8e46dbc042aaaeeda693b1c45280a8adfb4a35e0c3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEoqWwY40sFrAhU7_iZJBYjKrykKqCCqytG-fOxMVjD7bTKvwl_iRGU6GBDQvL1vV37HOvTlU9ZXTB6FKceoinvFuIRcvpveqYCcVruVT8_sH5qHqU0jWlTLJGPqyOGFWiFVwcVz9XJtsbJMlmJCb4lCNYnxOxnuQRyTgPMbg52UQiQmGDJwYyuPkHDqSfSV-KGC04cnUJCcmn1wQ87BVhTXYRzRRTiCRfXa4SubV5JFC-8xuHRLysP9e7MaSyYsijDQ6Kj2IAo5-Mw5DtgMRZ_w02-Lh6sAaX8MndflJ9fXv-5ex9ffHx3Yez1UVtpGhz3XEYhMBOSsGM7IVSAKIfOpRq6A2VHAAQB1BL0Reg4R2FDoZ1L0E0SI04qd7s391N_RYHg74MxeldtFuIsw5g9d833o56E240o7xpRNG_uNPH8H3ClPXWJoPOgccwJd3SrqW8bf8LslYqyWVTwOf_gNdhimXMSXNKVdMq2hXo1R4yMaQUcf3HMaP6d1R0iYrmnRa6RKXgzw67PID32RC_AOALv4o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200657608</pqid></control><display><type>article</type><title>Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Warnecke, J M ; Sontheimer, E J ; Piccirilli, J A ; Hartmann, R K</creator><creatorcontrib>Warnecke, J M ; Sontheimer, E J ; Piccirilli, J A ; Hartmann, R K</creatorcontrib><description>Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3'-OH and 5'-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3'-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3'- S -phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3'- S -phosphorothiolate-modified ptRNA carrying a 7 nt 5'-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5'-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn(2+)or Cd(2+). To suppress aberrant cleavage, we also constructed a 3'- S -phosphorothiolate-modified ptRNA with a 1 nt 5'-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3'- S -phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.</description><identifier>ISSN: 1362-4962</identifier><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/28.3.720</identifier><identifier>PMID: 10637323</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford Publishing Limited (England)</publisher><subject>Bacillus subtilis ; Bacillus subtilis - enzymology ; Bacillus subtilis - genetics ; Base Sequence ; Binding Sites ; Cations, Divalent - metabolism ; Cytosine - chemistry ; Cytosine - metabolism ; Endoribonucleases - chemistry ; Endoribonucleases - genetics ; Endoribonucleases - metabolism ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins ; Hydrolysis ; Kinetics ; Models, Chemical ; Molecular Weight ; Nucleic Acid Conformation ; Nucleotides - chemical synthesis ; Nucleotides - chemistry ; Nucleotides - genetics ; Nucleotides - metabolism ; Oligoribonucleotides - chemical synthesis ; Oligoribonucleotides - chemistry ; Oligoribonucleotides - genetics ; Oligoribonucleotides - metabolism ; Organothiophosphorus Compounds - chemical synthesis ; Organothiophosphorus Compounds - chemistry ; Organothiophosphorus Compounds - metabolism ; Ribonuclease P ; RNA Precursors - chemical synthesis ; RNA Precursors - chemistry ; RNA Precursors - genetics ; RNA Precursors - metabolism ; RNA Processing, Post-Transcriptional ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Catalytic - chemistry ; RNA, Catalytic - genetics ; RNA, Catalytic - metabolism ; RNA, Transfer - chemical synthesis ; RNA, Transfer - chemistry ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Substrate Specificity ; tRNA</subject><ispartof>Nucleic acids research, 2000-02, Vol.28 (3), p.720-727</ispartof><rights>Copyright Oxford University Press(England) Feb 2000</rights><rights>Copyright © 2000 Oxford University Press 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-82ad33e84431c4b366aa3bd8e46dbc042aaaeeda693b1c45280a8adfb4a35e0c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC102553/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC102553/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10637323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warnecke, J M</creatorcontrib><creatorcontrib>Sontheimer, E J</creatorcontrib><creatorcontrib>Piccirilli, J A</creatorcontrib><creatorcontrib>Hartmann, R K</creatorcontrib><title>Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3'-OH and 5'-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3'-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3'- S -phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3'- S -phosphorothiolate-modified ptRNA carrying a 7 nt 5'-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5'-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn(2+)or Cd(2+). To suppress aberrant cleavage, we also constructed a 3'- S -phosphorothiolate-modified ptRNA with a 1 nt 5'-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3'- S -phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.</description><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - genetics</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Cations, Divalent - metabolism</subject><subject>Cytosine - chemistry</subject><subject>Cytosine - metabolism</subject><subject>Endoribonucleases - chemistry</subject><subject>Endoribonucleases - genetics</subject><subject>Endoribonucleases - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Molecular Weight</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotides - chemical synthesis</subject><subject>Nucleotides - chemistry</subject><subject>Nucleotides - genetics</subject><subject>Nucleotides - metabolism</subject><subject>Oligoribonucleotides - chemical synthesis</subject><subject>Oligoribonucleotides - chemistry</subject><subject>Oligoribonucleotides - genetics</subject><subject>Oligoribonucleotides - metabolism</subject><subject>Organothiophosphorus Compounds - chemical synthesis</subject><subject>Organothiophosphorus Compounds - chemistry</subject><subject>Organothiophosphorus Compounds - metabolism</subject><subject>Ribonuclease P</subject><subject>RNA Precursors - chemical synthesis</subject><subject>RNA Precursors - chemistry</subject><subject>RNA Precursors - genetics</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Catalytic - chemistry</subject><subject>RNA, Catalytic - genetics</subject><subject>RNA, Catalytic - metabolism</subject><subject>RNA, Transfer - chemical synthesis</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Substrate Specificity</subject><subject>tRNA</subject><issn>1362-4962</issn><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAUhSMEoqWwY40sFrAhU7_iZJBYjKrykKqCCqytG-fOxMVjD7bTKvwl_iRGU6GBDQvL1vV37HOvTlU9ZXTB6FKceoinvFuIRcvpveqYCcVruVT8_sH5qHqU0jWlTLJGPqyOGFWiFVwcVz9XJtsbJMlmJCb4lCNYnxOxnuQRyTgPMbg52UQiQmGDJwYyuPkHDqSfSV-KGC04cnUJCcmn1wQ87BVhTXYRzRRTiCRfXa4SubV5JFC-8xuHRLysP9e7MaSyYsijDQ6Kj2IAo5-Mw5DtgMRZ_w02-Lh6sAaX8MndflJ9fXv-5ex9ffHx3Yez1UVtpGhz3XEYhMBOSsGM7IVSAKIfOpRq6A2VHAAQB1BL0Reg4R2FDoZ1L0E0SI04qd7s391N_RYHg74MxeldtFuIsw5g9d833o56E240o7xpRNG_uNPH8H3ClPXWJoPOgccwJd3SrqW8bf8LslYqyWVTwOf_gNdhimXMSXNKVdMq2hXo1R4yMaQUcf3HMaP6d1R0iYrmnRa6RKXgzw67PID32RC_AOALv4o</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Warnecke, J M</creator><creator>Sontheimer, E J</creator><creator>Piccirilli, J A</creator><creator>Hartmann, R K</creator><general>Oxford Publishing Limited (England)</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000201</creationdate><title>Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage</title><author>Warnecke, J M ; Sontheimer, E J ; Piccirilli, J A ; Hartmann, R K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-82ad33e84431c4b366aa3bd8e46dbc042aaaeeda693b1c45280a8adfb4a35e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - genetics</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Cations, Divalent - metabolism</topic><topic>Cytosine - chemistry</topic><topic>Cytosine - metabolism</topic><topic>Endoribonucleases - chemistry</topic><topic>Endoribonucleases - genetics</topic><topic>Endoribonucleases - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Molecular Weight</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotides - chemical synthesis</topic><topic>Nucleotides - chemistry</topic><topic>Nucleotides - genetics</topic><topic>Nucleotides - metabolism</topic><topic>Oligoribonucleotides - chemical synthesis</topic><topic>Oligoribonucleotides - chemistry</topic><topic>Oligoribonucleotides - genetics</topic><topic>Oligoribonucleotides - metabolism</topic><topic>Organothiophosphorus Compounds - chemical synthesis</topic><topic>Organothiophosphorus Compounds - chemistry</topic><topic>Organothiophosphorus Compounds - metabolism</topic><topic>Ribonuclease P</topic><topic>RNA Precursors - chemical synthesis</topic><topic>RNA Precursors - chemistry</topic><topic>RNA Precursors - genetics</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Catalytic - chemistry</topic><topic>RNA, Catalytic - genetics</topic><topic>RNA, Catalytic - metabolism</topic><topic>RNA, Transfer - chemical synthesis</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Substrate Specificity</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warnecke, J M</creatorcontrib><creatorcontrib>Sontheimer, E J</creatorcontrib><creatorcontrib>Piccirilli, J A</creatorcontrib><creatorcontrib>Hartmann, R K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warnecke, J M</au><au>Sontheimer, E J</au><au>Piccirilli, J A</au><au>Hartmann, R K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2000-02-01</date><risdate>2000</risdate><volume>28</volume><issue>3</issue><spage>720</spage><epage>727</epage><pages>720-727</pages><issn>1362-4962</issn><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3'-OH and 5'-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3'-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3'- S -phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3'- S -phosphorothiolate-modified ptRNA carrying a 7 nt 5'-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5'-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn(2+)or Cd(2+). To suppress aberrant cleavage, we also constructed a 3'- S -phosphorothiolate-modified ptRNA with a 1 nt 5'-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3'- S -phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.</abstract><cop>England</cop><pub>Oxford Publishing Limited (England)</pub><pmid>10637323</pmid><doi>10.1093/nar/28.3.720</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1362-4962
ispartof Nucleic acids research, 2000-02, Vol.28 (3), p.720-727
issn 1362-4962
0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_102553
source MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bacillus subtilis
Bacillus subtilis - enzymology
Bacillus subtilis - genetics
Base Sequence
Binding Sites
Cations, Divalent - metabolism
Cytosine - chemistry
Cytosine - metabolism
Endoribonucleases - chemistry
Endoribonucleases - genetics
Endoribonucleases - metabolism
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins
Hydrolysis
Kinetics
Models, Chemical
Molecular Weight
Nucleic Acid Conformation
Nucleotides - chemical synthesis
Nucleotides - chemistry
Nucleotides - genetics
Nucleotides - metabolism
Oligoribonucleotides - chemical synthesis
Oligoribonucleotides - chemistry
Oligoribonucleotides - genetics
Oligoribonucleotides - metabolism
Organothiophosphorus Compounds - chemical synthesis
Organothiophosphorus Compounds - chemistry
Organothiophosphorus Compounds - metabolism
Ribonuclease P
RNA Precursors - chemical synthesis
RNA Precursors - chemistry
RNA Precursors - genetics
RNA Precursors - metabolism
RNA Processing, Post-Transcriptional
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA, Catalytic - chemistry
RNA, Catalytic - genetics
RNA, Catalytic - metabolism
RNA, Transfer - chemical synthesis
RNA, Transfer - chemistry
RNA, Transfer - genetics
RNA, Transfer - metabolism
Substrate Specificity
tRNA
title Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20site%20constraints%20in%20the%20hydrolysis%20reaction%20catalyzed%20by%20bacterial%20RNase%20P:%20analysis%20of%20precursor%20tRNAs%20with%20a%20single%203'-S-phosphorothiolate%20internucleotide%20linkage&rft.jtitle=Nucleic%20acids%20research&rft.au=Warnecke,%20J%20M&rft.date=2000-02-01&rft.volume=28&rft.issue=3&rft.spage=720&rft.epage=727&rft.pages=720-727&rft.issn=1362-4962&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/28.3.720&rft_dat=%3Cproquest_pubme%3E374105141%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200657608&rft_id=info:pmid/10637323&rfr_iscdi=true