Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage

Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3'-OH and 5'-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2000-02, Vol.28 (3), p.720-727
Hauptverfasser: Warnecke, J M, Sontheimer, E J, Piccirilli, J A, Hartmann, R K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3'-OH and 5'-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3'-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3'- S -phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3'- S -phosphorothiolate-modified ptRNA carrying a 7 nt 5'-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5'-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn(2+)or Cd(2+). To suppress aberrant cleavage, we also constructed a 3'- S -phosphorothiolate-modified ptRNA with a 1 nt 5'-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3'- S -phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.
ISSN:1362-4962
0305-1048
1362-4962
DOI:10.1093/nar/28.3.720