Using deep learning–derived image features in radiologic time series to make personalised predictions: proof of concept in colonic transit data
Objectives Siamese neural networks (SNN) were used to classify the presence of radiopaque beads as part of a colonic transit time study (CTS). The SNN output was then used as a feature in a time series model to predict progression through a CTS. Methods This retrospective study included all patients...
Gespeichert in:
Veröffentlicht in: | European radiology 2023-11, Vol.33 (11), p.8376-8386 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives
Siamese neural networks (SNN) were used to classify the presence of radiopaque beads as part of a colonic transit time study (CTS). The SNN output was then used as a feature in a time series model to predict progression through a CTS.
Methods
This retrospective study included all patients undergoing a CTS in a single institution from 2010 to 2020. Data were partitioned in an 80/20 Train/Test split. Deep learning models based on a SNN architecture were trained and tested to classify images according to the presence, absence, and number of radiopaque beads and to output the Euclidean distance between the feature representations of the input images. Time series models were used to predict the total duration of the study.
Results
In total, 568 images of 229 patients (143, 62% female, mean age 57) patients were included. For the classification of the presence of beads, the best performing model (Siamese DenseNET trained with a contrastive loss with unfrozen weights) achieved an accuracy, precision, and recall of 0.988, 0.986, and 1. A Gaussian process regressor (GPR) trained on the outputs of the SNN outperformed both GPR using only the number of beads and basic statistical exponential curve fitting with MAE of 0.9 days compared to 2.3 and 6.3 days (
p
|
---|---|
ISSN: | 1432-1084 0938-7994 1432-1084 |
DOI: | 10.1007/s00330-023-09769-9 |