The relevance of acid sphingomyelinase as a potential target for therapeutic intervention in hepatic disorders: current scenario and anticipated trends

Acid sphingomyelinase (ASMase) serves as one of the most remarkable enzymes in sphingolipid biology. ASMase facilitates the hydrolysis of sphingomyelin, yielding ceramide and phosphorylcholine via the phospholipase C signal transduction pathway. Owing to its prominent intervention in apoptosis, ASMa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of toxicology 2023-08, Vol.97 (8), p.2069-2087
Hauptverfasser: Mir, Ishfaq Hassan, Thirunavukkarasu, Chinnasamy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acid sphingomyelinase (ASMase) serves as one of the most remarkable enzymes in sphingolipid biology. ASMase facilitates the hydrolysis of sphingomyelin, yielding ceramide and phosphorylcholine via the phospholipase C signal transduction pathway. Owing to its prominent intervention in apoptosis, ASMase, and its product ceramide is now at the bleeding edge of lipid research due to the coalesced efforts of several research institutions over the past 40 years. ASMase-catalyzed ceramide synthesis profoundly alters the physiological properties of membrane structure in response to a broad range of stimulations, orchestrating signaling cascades for endoplasmic reticulum stress, autophagy, and lysosomal membrane permeabilization, which influences the development of hepatic disorders, such as steatohepatitis, hepatic fibrosis, drug-induced liver injury, and hepatocellular carcinoma. As a result, the potential to modulate the ASMase action with appropriate pharmaceutical antagonists has sparked a lot of curiosity. This article emphasizes the fundamental mechanisms of the systems that govern ASMase aberrations in various hepatic pathologies. Furthermore, we present an insight into the potential therapeutic agents used to mitigate ASMase irregularities and the paramountcy of such inhibitors in drug repurposing.
ISSN:0340-5761
1432-0738
DOI:10.1007/s00204-023-03529-w