A survey on deep learning models for detection of COVID-19

The spread of the COVID-19 started back in 2019; and so far, more than 4 million people around the world have lost their lives to this deadly virus and its variants. In view of the high transmissibility of the Corona virus, which has turned this disease into a global pandemic, artificial intelligenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2023-08, Vol.35 (23), p.16945-16973
Hauptverfasser: Mozaffari, Javad, Amirkhani, Abdollah, Shokouhi, Shahriar B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spread of the COVID-19 started back in 2019; and so far, more than 4 million people around the world have lost their lives to this deadly virus and its variants. In view of the high transmissibility of the Corona virus, which has turned this disease into a global pandemic, artificial intelligence can be employed as an effective tool for an earlier detection and treatment of this illness. In this review paper, we evaluate the performance of the deep learning models in processing the X-Ray and CT-Scan images of the Corona patients’ lungs and describe the changes made to these models in order to enhance their Corona detection accuracy. To this end, we introduce the famous deep learning models such as VGGNet, GoogleNet and ResNet and after reviewing the research works in which these models have been used for the detection of COVID-19, we compare the performances of the newer models such as DenseNet, CapsNet, MobileNet and EfficientNet. We then present the deep learning techniques of GAN, transfer learning, and data augmentation and examine the statistics of using these techniques. Here, we also describe the datasets introduced since the onset of the COVID-19. These datasets contain the lung images of Corona patients, healthy individuals, and the patients with non-Corona pulmonary diseases. Lastly, we elaborate on the existing challenges in the use of artificial intelligence for COVID-19 detection and the prospective trends of using this method in similar situations and conditions.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-023-08683-x