Unveiling the Stereoselectivity and Regioselectivity of the [3+2] Cycloaddition Reaction between N-methyl-C-4-methylphenyl-nitrone and 2-Propynamide from a MEDT Perspective
[3+2] cycloaddition reactions play a crucial role in synthesizing complex organic molecules and have significant applications in drug discovery and materials science. In this study, the [3+2] cycloaddition (32CA) reactions of N-methyl-C-4-methyl phenyl-nitrone and 2-propynamide , which have not been...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-05, Vol.24 (10), p.9102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [3+2] cycloaddition reactions play a crucial role in synthesizing complex organic molecules and have significant applications in drug discovery and materials science. In this study, the [3+2] cycloaddition (32CA) reactions of N-methyl-C-4-methyl phenyl-nitrone
and 2-propynamide
, which have not been extensively studied before, were investigated using molecular electron density theory (MEDT) at the B3LYP/6-311++G(d,p) level of theory. According to an electron localization function (ELF) study, N-methyl-C-4-methyl phenyl-nitrone
is a zwitterionic species with no pseudoradical or carbenoid centers. Conceptual density functional theory (CDFT) indices were used to predict the global electronic flux from the strong nucleophilic N-methyl-C-4-methyl phenylnitrone
to the electrophilic 2-propynamide
functions. The 32CA reactions proceeded through two pairs of stereo- and regioisomeric reaction pathways to generate four different products:
,
,
, and
. The reaction pathways were irreversible owing to their exothermic characters: -136.48, -130.08, -130.99, and -140.81 kJ mol
, respectively. The enthalpy of the 32CA reaction leading to the formation of cycloadduct
was lower compared with the other path owing to a slight increase in its polar character, observed through the global electron density transfer (GEDT) during the transition states and along the reaction path. A bonding evolution theory (BET) analysis showed that these 32CA reactions proceed through the coupling of pseudoradical centers, and the formation of new C-C and C-O covalent bonds did not begin in the transition states. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24109102 |