Tissue Classification of Breast Cancer by Hyperspectral Unmixing

(1) Background: Assessing the resection margins during breast-conserving surgery is an important clinical need to minimize the risk of recurrent breast cancer. However, currently there is no technique that can provide real-time feedback to aid surgeons in the margin assessment. Hyperspectral imaging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2023-05, Vol.15 (10), p.2679
Hauptverfasser: Jong, Lynn-Jade S, Post, Anouk L, Veluponnar, Dinusha, Geldof, Freija, Sterenborg, Henricus J C M, Ruers, Theo J M, Dashtbozorg, Behdad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(1) Background: Assessing the resection margins during breast-conserving surgery is an important clinical need to minimize the risk of recurrent breast cancer. However, currently there is no technique that can provide real-time feedback to aid surgeons in the margin assessment. Hyperspectral imaging has the potential to overcome this problem. To classify resection margins with this technique, a tissue discrimination model should be developed, which requires a dataset with accurate ground-truth labels. However, establishing such a dataset for resection specimens is difficult. (2) Methods: In this study, we therefore propose a novel approach based on hyperspectral unmixing to determine which pixels within hyperspectral images should be assigned to the ground-truth labels from histopathology. Subsequently, we use this hyperspectral-unmixing-based approach to develop a tissue discrimination model on the presence of tumor tissue within the resection margins of ex vivo breast lumpectomy specimens. (3) Results: In total, 372 measured locations were included on the lumpectomy resection surface of 189 patients. We achieved a sensitivity of 0.94, specificity of 0.85, accuracy of 0.87, Matthew's correlation coefficient of 0.71, and area under the curve of 0.92. (4) Conclusion: Using this hyperspectral-unmixing-based approach, we demonstrated that the measured locations with hyperspectral imaging on the resection surface of lumpectomy specimens could be classified with excellent performance.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers15102679