Dynamics of Active SiO2–Pt Janus Colloids in Dilute Poly(ethylene oxide) Solutions
Self-propelled Janus colloids (JCs) have recently gained much attention due to their ability to move autonomously and mimic biological microswimmers. This ability makes them suitable for prospective drug/cargo-delivery applications in microscopic domains. Understanding their dynamics in surroundings...
Gespeichert in:
Veröffentlicht in: | ACS Physical Chemistry Au 2023-05, Vol.3 (3), p.279-289 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-propelled Janus colloids (JCs) have recently gained much attention due to their ability to move autonomously and mimic biological microswimmers. This ability makes them suitable for prospective drug/cargo-delivery applications in microscopic domains. Understanding their dynamics in surroundings doped with macromolecules such as polymers is crucial, as most of the target application media are complex in nature. In this study, we investigate the self-diffusiophoretic motion of hydrogen peroxide-fuelled SiO2–Pt JCs in the presence of dilute amounts of poly(ethylene oxide) (PEO). Despite the addition of PEO chains producing a Newtonian behavior with negligible increase in viscosity, the ballistic movement and rotational fluctuations of active JCs are observed to be significantly suppressed. With an increase in the polymer concentration, this leads to a transition from smooth to jittery to cage-hopping to the arrested motion of active JCs. We further propose that the anisotropic interaction of the polymers with the JC increases the “local drag” of the medium, resulting in the unusual impediment of the active motion. |
---|---|
ISSN: | 2694-2445 2694-2445 |
DOI: | 10.1021/acsphyschemau.2c00056 |