Improved patient selection for primary prevention ICD implantation by predicting ICD non-benefit using artificial intelligence

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): NWO Rubicon (452019308) Amsterdam Cardiovascular Sciences Background Left Ventricular Ejection Fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europace (London, England) England), 2023-05, Vol.25 (Supplement_1)
Hauptverfasser: Kolk, M Z H, Ruiperez-Campillo, S, Deb, B, Bekkers, E J, De Vos, B D, Van Der Lingen, A C J, Allaart, C P, Isgum, I, Rogers, A J, Clopton, P, Wilde, A A M, Knops, R E, Narayan, S M, Tjong, F V Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): NWO Rubicon (452019308) Amsterdam Cardiovascular Sciences Background Left Ventricular Ejection Fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD) or benefit from an ICD. Machine (ML) and deep (DL) learning provide new opportunities for personalised predictions using complex, multi-modal physiological data. Objective We hypothesise that risk stratification for ICD implantation can be improved by ML and DL models that combine clinical variables with time series features from 12-lead electrocardiograms (ECG). Methods We present a multicentre study of 1010 patients with an ischaemic, dilated or non-ischaemic cardiomyopathy and LVEF≤35% implanted with an ICD between 2007 and 2021 for primary prevention of SCD (64.9 ±10.8 years, 73.2% male) in two academic hospitals. For each patient, raw 12-lead, 10-second ECG-recordings obtained
ISSN:1099-5129
1532-2092
DOI:10.1093/europace/euad122.537