Improved patient selection for primary prevention ICD implantation by predicting ICD non-benefit using artificial intelligence
Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): NWO Rubicon (452019308) Amsterdam Cardiovascular Sciences Background Left Ventricular Ejection Fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death...
Gespeichert in:
Veröffentlicht in: | Europace (London, England) England), 2023-05, Vol.25 (Supplement_1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Funding Acknowledgements
Type of funding sources: Public grant(s) – National budget only. Main funding source(s): NWO Rubicon (452019308)
Amsterdam Cardiovascular Sciences
Background
Left Ventricular Ejection Fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD) or benefit from an ICD. Machine (ML) and deep (DL) learning provide new opportunities for personalised predictions using complex, multi-modal physiological data.
Objective
We hypothesise that risk stratification for ICD implantation can be improved by ML and DL models that combine clinical variables with time series features from 12-lead electrocardiograms (ECG).
Methods
We present a multicentre study of 1010 patients with an ischaemic, dilated or non-ischaemic cardiomyopathy and LVEF≤35% implanted with an ICD between 2007 and 2021 for primary prevention of SCD (64.9 ±10.8 years, 73.2% male) in two academic hospitals. For each patient, raw 12-lead, 10-second ECG-recordings obtained |
---|---|
ISSN: | 1099-5129 1532-2092 |
DOI: | 10.1093/europace/euad122.537 |