Melatonin Confers NaCl Tolerance in Withania coagulans L. by Maintaining Na + /K + Homeostasis, Strengthening the Antioxidant Defense System and Modulating Withanolides Synthesis-Related Genes

As a multifunctional signaling molecule, melatonin (ML) is widely considered to induce the defense mechanism and increase the accumulation of secondary metabolites under abiotic stresses. Here, the effects of different concentrations of ML (100 and 200 µM) on the biochemical and molecular responses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of plant physiology 2023-06, Vol.70 (3), p.52-52, Article 52
Hauptverfasser: Dehvari-Nagan, P, Abbaspour, H, Asare, M H, Saadatmand, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a multifunctional signaling molecule, melatonin (ML) is widely considered to induce the defense mechanism and increase the accumulation of secondary metabolites under abiotic stresses. Here, the effects of different concentrations of ML (100 and 200 µM) on the biochemical and molecular responses of L. in hydroponic conditions under 200 mM NaCl treatment were evaluated. The results showed that NaCl treatment impaired photosynthetic function and reduced plant growth by decreasing photosynthetic pigments and gas exchange parameters. NaCl stress also induced oxidative stress and membrane lipid damage, disrupting Na /K homeostasis and increasing hydrogen peroxide levels. NaCl toxicity decreased nitrogen (N) assimilation activity in leaves by reducing the activity of enzymes associated with N metabolism. However, adding ML to NaCl-stressed plants improved gas exchange parameters and increased photosynthesis efficiency, resulting in improved plant growth. By enhancing the activity of antioxidant enzymes and reducing hydrogen peroxide levels, ML ameliorated NaCl-induced oxidative stress. By improving N metabolism and restoring Na /K homeostasis in NaCl-stressed plants, ML improved N uptake and plant adaptation to salinity. ML increased the expression of genes responsible for the biosynthesis of withanolides ( , , , , , and ) and, as a result, increased the accumulation of withanolides A and withaferin A in leaves under NaCl stress. Overall, our results indicate the potential of ML to improve plant adaptation under NaCl stress through fundamental changes in plant metabolism. The online version contains supplementary material available at 10.1134/S1021443723600125.
ISSN:1021-4437
1608-3407
DOI:10.1134/S1021443723600125