Stimulating β-adrenergic receptors promotes synaptic potentiation by switching CaMKII movement from LTD to LTP mode
Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating β-adrenergic receptors (βARs) enables LTP...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2023-06, Vol.299 (6), p.104706, Article 104706 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating β-adrenergic receptors (βARs) enables LTP induction also by low-frequency stimulation (1 Hz) or theta frequencies (∼5 Hz) that do not cause plasticity by themselves. In contrast to high-frequency stimulation-LTP, such βAR-LTP requires Ca2+-flux through L-type voltage-gated Ca2+-channels, not N-methyl-D-aspartate–type glutamate receptors. Surprisingly, we found that βAR-LTP still required a nonionotropic scaffolding function of the N-methyl-D-aspartate–type glutamate receptor: the stimulus-induced binding of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to its GluN2B subunit that mediates CaMKII movement to excitatory synapses. In hippocampal neurons, β-adrenergic stimulation with isoproterenol (Iso) transformed LTD-type CaMKII movement to LTP-type movement, resulting in CaMKII movement to excitatory instead of inhibitory synapses. Additionally, Iso enabled induction of a major cell-biological feature of LTP in response to LTD stimuli: increased surface expression of GluA1 fused with super-ecliptic pHluorein. Like for βAR-LTP in hippocampal slices, the Iso effects on CaMKII movement and surface expression of GluA1 fused with super-ecliptic pHluorein involved L-type Ca2+-channels and specifically required β2-ARs. Taken together, these results indicate that Iso transforms LTD stimuli to LTP signals by switching CaMKII movement and GluN2B binding to LTP mode. |
---|---|
ISSN: | 0021-9258 1083-351X 1083-351X |
DOI: | 10.1016/j.jbc.2023.104706 |