Digital microfluidics-based digital counting of single-cell copy number variation (dd-scCNV Seq)

Single-cell copy number variations (CNVs), major dynamic changes in humans, result in differential levels of gene expression and account for adaptive traits or underlying disease. Single-cell sequencing is needed to reveal these CNVs but has been hindered by single-cell whole-genome amplification (s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-05, Vol.120 (20), p.e2221934120-e2221934120
Hauptverfasser: Yu, Xiyuan, Ruan, Weidong, Lin, Fanghe, Qian, Weizhou, Zou, Yuan, Liu, Yilong, Su, Rui, Niu, Qi, Ruan, Qingyu, Lin, Wei, Zhu, Zhi, Zhang, Huimin, Yang, Chaoyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-cell copy number variations (CNVs), major dynamic changes in humans, result in differential levels of gene expression and account for adaptive traits or underlying disease. Single-cell sequencing is needed to reveal these CNVs but has been hindered by single-cell whole-genome amplification (scWGA) bias, leading to inaccurate gene copy number counting. In addition, most of the current scWGA methods are labor intensive, time-consuming, and expensive with limited wide application. Here, we report a unique single-cell whole-genome library preparation approach based on igital microfluidics for igital counting of ingle- ell opy umber ariation (dd-scCNV Seq). dd-scCNV Seq directly fragments the original single-cell DNA and uses these fragments as templates for amplification. These reduplicative fragments can be filtered computationally to generate the original partitioned unique identified fragments, thereby enabling digital counting of copy number variation. dd-scCNV Seq showed an increase in uniformity in the single-molecule data, leading to more accurate CNV patterns compared to other methods with low-depth sequencing. Benefiting from digital microfluidics, dd-scCNV Seq allows automated liquid handling, precise single-cell isolation, and high-efficiency and low-cost genome library preparation. dd-scCNV Seq will accelerate biological discovery by enabling accurate profiling of copy number variations at single-cell resolution.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2221934120