Purification of human β- and γ-actin from budding yeast
Biochemical studies of human actin and its binding partners rely heavily on abundant and easily purified α-actin from skeletal muscle. Therefore, muscle actin has been used to evaluate and determine the activities of most actin regulatory proteins but there is an underlying concern that these protei...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2023-05, Vol.136 (9) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biochemical studies of human actin and its binding partners rely heavily on abundant and easily purified α-actin from skeletal muscle. Therefore, muscle actin has been used to evaluate and determine the activities of most actin regulatory proteins but there is an underlying concern that these proteins perform differently from actin present in non-muscle cells. To provide easily accessible and relatively abundant sources of human β- or γ-actin (i.e. cytoplasmic actins), we developed Saccharomyces cerevisiae strains that express each as their sole source of actin. Both β- or γ-actin purified in this system polymerize and interact with various binding partners, including profilin, mDia1 (formin), fascin and thymosin-β4 (Tβ4). Notably, Tβ4 and profilin bind to β- or γ-actin with higher affinity than to α-actin, emphasizing the value of testing actin ligands with specific actin isoforms. These reagents will make specific isoforms of actin more accessible for future studies on actin regulation. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.260540 |