Impact of Acute Visual Experience on Development of LGN Receptive Fields in the Ferret
Selectivity for direction of motion is a key feature of primary visual cortical neurons. Visual experience is required for direction selectivity in carnivore and primate visual cortex, but the circuit mechanisms of its formation remain incompletely understood. Here, we examined how developing latera...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2023-05, Vol.43 (19), p.3495-3508 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Selectivity for direction of motion is a key feature of primary visual cortical neurons. Visual experience is required for direction selectivity in carnivore and primate visual cortex, but the circuit mechanisms of its formation remain incompletely understood. Here, we examined how developing lateral geniculate nucleus (LGN) neurons may contribute to cortical direction selectivity. Using
electrophysiology techniques, we examined LGN receptive field properties of visually naive female ferrets before and after exposure to 6 h of motion stimuli to assess the effect of acute visual experience on LGN cell development. We found that acute experience with motion stimuli did not significantly affect the weak orientation or direction selectivity of LGN neurons. In addition, we found that neither latency nor sustainedness or transience of LGN neurons significantly changed with acute experience. These results suggest that the direction selectivity that emerges in cortex after acute experience is computed in cortex and cannot be explained by changes in LGN cells.
The development of typical neural circuitry requires experience-independent and experience-dependent factors. In the visual cortex of carnivores and primates, selectivity for motion arises as a result of experience, but we do not understand whether the major brain area that sits between the retina and the visual cortex-the lateral geniculate nucleus of the thalamus-also participates. Here, we found that lateral geniculate neurons do not exhibit changes as a result of several hours of visual experience with moving stimuli at a time when visual cortical neurons undergo a rapid change. We conclude that lateral geniculate neurons do not participate in this plasticity and that changes in cortex are likely responsible for the development of direction selectivity in carnivores and primates. |
---|---|
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.1461-21.2023 |