In Vitro Release and In Vivo Pharmacokinetics of Praziquantel Loaded in Different Polymer Particles
Approximately 1 billion people are affected by neglected diseases around the world. Among these diseases, schistosomiasis constitutes one of the most important public health problems, being caused by and treated through the oral administration of praziquantel (PZQ). Despite being a common disease in...
Gespeichert in:
Veröffentlicht in: | Materials 2023-04, Vol.16 (9), p.3382 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Approximately 1 billion people are affected by neglected diseases around the world. Among these diseases, schistosomiasis constitutes one of the most important public health problems, being caused by
and treated through the oral administration of praziquantel (PZQ). Despite being a common disease in children, the medication is delivered in the form of large, bitter-tasting tablets, which makes it difficult for patients to comply with the treatment. In order to mask the taste of the drug, allow more appropriate doses for children, and enhance the absorption by the body, different polymer matrices based on poly(methyl methacrylate) (PMMA) were developed and used to encapsulate PZQ. Polymer matrices included PMMA nano- and microparticles, PMMA-co-DEAEMA (2-(diethylamino)ethyl methacrylate), and PMMA-co-DMAEMA (2-(dimethylamino)ethyl methacrylate) microparticles. The performances of the drug-loaded particles were characterized in vitro through dissolution tests and in vivo through pharmacokinetic analyses in rats for the first time. The in vitro dissolution studies were carried out in accordance with the Brazilian Pharmacopeia and revealed a good PZQ release profile in an acidic medium for the PMMA-DEAEMA copolymer, reaching values close to 100 % in less than 3 h. The in vivo pharmacokinetic analyses were conducted using free PZQ as the control group that was compared with the investigated matrices. The drug was administered orally at doses of 60 mg/kg, and the PMMA-co-DEAEMA copolymer microparticles were found to be the most efficient release system among the investigated ones, reaching a C
value of 1007 ± 83 ng/mL, even higher than that observed for free PZQ, which displayed a C
value of 432 ± 98 ng/mL. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16093382 |