Combination of Everolimus and Bortezomib Inhibits the Growth and Metastasis of Bone and Soft Tissue Sarcomas via JNK/p38/ERK MAPK and AKT Pathways

The combination of the mammalian target of rapamycin and proteasome inhibitors is a new treatment strategy for various tumors. Herein, we investigated the synergistic effect of everolimus and bortezomib on tumor growth and metastasis in bone and soft tissue sarcomas. The antitumor effects of everoli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2023-04, Vol.15 (9), p.2468
Hauptverfasser: Nakamura, Koichi, Asanuma, Kunihiro, Okamoto, Takayuki, Iino, Takahiro, Hagi, Tomohito, Nakamura, Tomoki, Sudo, Akihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The combination of the mammalian target of rapamycin and proteasome inhibitors is a new treatment strategy for various tumors. Herein, we investigated the synergistic effect of everolimus and bortezomib on tumor growth and metastasis in bone and soft tissue sarcomas. The antitumor effects of everolimus and bortezomib were assessed in a human fibrosarcoma (FS) cell line (HT1080) and mouse osteosarcoma (OS) cell line (LM8) by MTS assays and Western blotting. The effects of everolimus and bortezomib on HT1080 and LM8 tumor growth in xenograft mouse models were evaluated using tumor volume and the number of metastatic nodes of the resected lungs. Immunohistochemistry was used to evaluate cleaved PARP expression. The combination therapy decreased FS and OS cell proliferation compared with either drug alone. This combination induced more intense p-p38, p-JNK, and p-ERK and activated apoptosis signals, such as caspase-3, compared with single-agent treatment. The combination treatment reduced p-AKT and MYC expression, decreased FS and OS tumor volumes, and suppressed lung metastases of OS. The combination therapy inhibited tumor growth in FS and OS and metastatic progression of OS via the JNK/p38/ERK MAPK and AKT pathways. These results could aid in the development of new therapeutic strategies for sarcomas.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers15092468