Deep Learning Methods for Chest Disease Detection Using Radiography Images

X-ray images are the most widely used medical imaging modality. They are affordable, non-dangerous, accessible, and can be used to identify different diseases. Multiple computer-aided detection (CAD) systems using deep learning (DL) algorithms were recently proposed to support radiologists in identi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2023-05, Vol.4 (4), p.388-388, Article 388
Hauptverfasser: Nasser, Adnane Ait, Akhloufi, Moulay A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:X-ray images are the most widely used medical imaging modality. They are affordable, non-dangerous, accessible, and can be used to identify different diseases. Multiple computer-aided detection (CAD) systems using deep learning (DL) algorithms were recently proposed to support radiologists in identifying different diseases on medical images. In this paper, we propose a novel two-step approach for chest disease classification. The first is a multi-class classification step based on classifying X-ray images by infected organs into three classes (normal, lung disease, and heart disease). The second step of our approach is a binary classification of seven specific lungs and heart diseases. We use a consolidated dataset of 26,316 chest X-ray (CXR) images. Two deep learning methods are proposed in this paper. The first is called DC-ChestNet. It is based on ensembling deep convolutional neural network (DCNN) models. The second is named VT-ChestNet. It is based on a modified transformer model. VT-ChestNet achieved the best performance overcoming DC-ChestNet and state-of-the-art models (DenseNet121, DenseNet201, EfficientNetB5, and Xception). VT-ChestNet obtained an area under curve (AUC) of 95.13% for the first step. For the second step, it obtained an average AUC of 99.26% for heart diseases and an average AUC of 99.57% for lung diseases.
ISSN:2661-8907
2662-995X
2661-8907
DOI:10.1007/s42979-023-01818-w