An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals

One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-05, Vol.17 (9), p.8796-8806
Hauptverfasser: Pokratath, Rohan, Lermusiaux, Laurent, Checchia, Stefano, Mathew, Jikson Pulparayil, Cooper, Susan Rudd, Mathiesen, Jette Katja, Landaburu, Guillaume, Banerjee, Soham, Tao, Songsheng, Reichholf, Nico, Billinge, Simon J. L., Abécassis, Benjamin, Jensen, Kirsten M. Ø., De Roo, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) to investigate the nucleation and growth of zirconia nanocrystals from zirconium chloride and zirconium isopropoxide at 340 °C, in the presence of surfactant (tri-n-octylphosphine oxide). Through E1 elimination, precursor conversion leads to the formation of small amorphous particles (less than 2 nm in diameter). Over the course of the reaction, the total particle concentration decreases while the concentration of nanocrystals stays constant after a sudden increase (nucleation). Kinetic modeling suggests that amorphous particles nucleate into nanocrystals through a second order process and they are also the source of nanocrystal growth. There is no evidence for a soluble monomer. The nonclassical nucleation is related to a precursor decomposition rate that is an order of magnitude higher than the observed crystallization rate. Using different zirconium precursors (e.g., ZrBr4 or Zr­(OtBu)4), we can tune the precursor decomposition rate and thus control the nanocrystal size. We expect these findings to help researchers in the further development of colloidal syntheses.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.3c02149