ICAT: a novel algorithm to robustly identify cell states following perturbations in single-cell transcriptomes

Abstract Motivation The detection of distinct cellular identities is central to the analysis of single-cell RNA sequencing (scRNA-seq) experiments. However, in perturbation experiments, current methods typically fail to correctly match cell states between conditions or erroneously remove population...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2023-05, Vol.39 (5)
Hauptverfasser: Hawkins, Dakota Y, Zuch, Daniel T, Huth, James, Rodriguez-Sastre, Nahomie, McCutcheon, Kelley R, Glick, Abigail, Lion, Alexandra T, Thomas, Christopher F, Descoteaux, Abigail E, Johnson, William Evan, Bradham, Cynthia A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation The detection of distinct cellular identities is central to the analysis of single-cell RNA sequencing (scRNA-seq) experiments. However, in perturbation experiments, current methods typically fail to correctly match cell states between conditions or erroneously remove population substructure. Here, we present the novel, unsupervised algorithm Identify Cell states Across Treatments (ICAT) that employs self-supervised feature weighting and control-guided clustering to accurately resolve cell states across heterogeneous conditions. Results Using simulated and real datasets, we show ICAT is superior in identifying and resolving cell states compared with current integration workflows. While requiring no a priori knowledge of extant cell states or discriminatory marker genes, ICAT is robust to low signal strength, high perturbation severity, and disparate cell type proportions. We empirically validate ICAT in a developmental model and find that only ICAT identifies a perturbation-unique cellular response. Taken together, our results demonstrate that ICAT offers a significant improvement in defining cellular responses to perturbation in scRNA-seq data. Availability and implementation https://github.com/BradhamLab/icat.
ISSN:1367-4811
1367-4803
1367-4811
DOI:10.1093/bioinformatics/btad278