On the benefits of self-taught learning for brain decoding

Abstract Context We study the benefits of using a large public neuroimaging database composed of functional magnetic resonance imaging (fMRI) statistic maps, in a self-taught learning framework, for improving brain decoding on new tasks. First, we leverage the NeuroVault database to train, on a sele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2023-05, Vol.12, p.1-17
Hauptverfasser: Germani, Elodie, Fromont, Elisa, Maumet, Camille
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Context We study the benefits of using a large public neuroimaging database composed of functional magnetic resonance imaging (fMRI) statistic maps, in a self-taught learning framework, for improving brain decoding on new tasks. First, we leverage the NeuroVault database to train, on a selection of relevant statistic maps, a convolutional autoencoder to reconstruct these maps. Then, we use this trained encoder to initialize a supervised convolutional neural network to classify tasks or cognitive processes of unseen statistic maps from large collections of the NeuroVault database. Results We show that such a self-taught learning process always improves the performance of the classifiers, but the magnitude of the benefits strongly depends on the number of samples available both for pretraining and fine-tuning the models and on the complexity of the targeted downstream task. Conclusion The pretrained model improves the classification performance and displays more generalizable features, less sensitive to individual differences.
ISSN:2047-217X
2047-217X
DOI:10.1093/gigascience/giad029