On the benefits of self-taught learning for brain decoding
Abstract Context We study the benefits of using a large public neuroimaging database composed of functional magnetic resonance imaging (fMRI) statistic maps, in a self-taught learning framework, for improving brain decoding on new tasks. First, we leverage the NeuroVault database to train, on a sele...
Gespeichert in:
Veröffentlicht in: | Gigascience 2023-05, Vol.12, p.1-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Context
We study the benefits of using a large public neuroimaging database composed of functional magnetic resonance imaging (fMRI) statistic maps, in a self-taught learning framework, for improving brain decoding on new tasks. First, we leverage the NeuroVault database to train, on a selection of relevant statistic maps, a convolutional autoencoder to reconstruct these maps. Then, we use this trained encoder to initialize a supervised convolutional neural network to classify tasks or cognitive processes of unseen statistic maps from large collections of the NeuroVault database.
Results
We show that such a self-taught learning process always improves the performance of the classifiers, but the magnitude of the benefits strongly depends on the number of samples available both for pretraining and fine-tuning the models and on the complexity of the targeted downstream task.
Conclusion
The pretrained model improves the classification performance and displays more generalizable features, less sensitive to individual differences. |
---|---|
ISSN: | 2047-217X 2047-217X |
DOI: | 10.1093/gigascience/giad029 |