Can Machine Learning Predict the Phase Behavior of Surfactants?

We explore the prediction of surfactant phase behavior using state-of-the-art machine learning methods, using a data set for twenty-three nonionic surfactants. Most machine learning classifiers we tested are capable of filling in missing data in a partially complete data set. However, strong data bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2023-04, Vol.127 (16), p.3711-3727
Hauptverfasser: Thacker, Joseph C. R., Bray, David J., Warren, Patrick B., Anderson, Richard L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3727
container_issue 16
container_start_page 3711
container_title The journal of physical chemistry. B
container_volume 127
creator Thacker, Joseph C. R.
Bray, David J.
Warren, Patrick B.
Anderson, Richard L.
description We explore the prediction of surfactant phase behavior using state-of-the-art machine learning methods, using a data set for twenty-three nonionic surfactants. Most machine learning classifiers we tested are capable of filling in missing data in a partially complete data set. However, strong data bias and a lack of chemical space information generally lead to poorer results for entire de novo phase diagram prediction. Although some machine learning classifiers perform better than others, these observations are largely robust to the particular choice of algorithm. Finally, we explore how de novo phase diagram prediction can be improved by the inclusion of observations from state points sampled by an analogy to commonly used experimental protocols. Our results indicate what factors should be considered when preparing for machine learning prediction of surfactant phase behavior in future studies.
doi_str_mv 10.1021/acs.jpcb.2c08232
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800148624</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-3257ae7434f0c8e3a254a873302975bd32e37d638a4899ce825e3c4b72d817463</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRtFbvniRHD7buV7LbU9HiF1QsqOdlupmYlHZTd5OC_71bW4sePAwzMO-9GX6EnDHaZ5SzK7ChP1vaaZ9bqrnge6TDUk57sdT-ds4YzY7IcQgzSnnKdXZIjoSiUggqO2Q4Apc8gS0rh8kYwbvKvScTj3llm6QpMZmUEDC5wRJWVe2TukheWl-AbcA1YXhCDgqYBzzd9i55u7t9HT30xs_3j6PrcQ-kkE1P8FQBqjgX1GoUwFMJWsUf-ECl01xwFCrPhAapBwOLmqcorJwqnmumZCa6ZLjJXbbTBeYWXeNhbpa-WoD_NDVU5u_GVaV5r1eGUZZSkQ1iwsU2wdcfLYbGLKpgcT4Hh3UbDNeUMqkzLqOUbqTW1yF4LHZ3GDVr8CaCN2vwZgs-Ws5__7cz_JCOgsuN4Ntat95FXP_nfQFZD42-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800148624</pqid></control><display><type>article</type><title>Can Machine Learning Predict the Phase Behavior of Surfactants?</title><source>ACS Publications - Downers Grove, IL campus only.</source><creator>Thacker, Joseph C. R. ; Bray, David J. ; Warren, Patrick B. ; Anderson, Richard L.</creator><creatorcontrib>Thacker, Joseph C. R. ; Bray, David J. ; Warren, Patrick B. ; Anderson, Richard L.</creatorcontrib><description>We explore the prediction of surfactant phase behavior using state-of-the-art machine learning methods, using a data set for twenty-three nonionic surfactants. Most machine learning classifiers we tested are capable of filling in missing data in a partially complete data set. However, strong data bias and a lack of chemical space information generally lead to poorer results for entire de novo phase diagram prediction. Although some machine learning classifiers perform better than others, these observations are largely robust to the particular choice of algorithm. Finally, we explore how de novo phase diagram prediction can be improved by the inclusion of observations from state points sampled by an analogy to commonly used experimental protocols. Our results indicate what factors should be considered when preparing for machine learning prediction of surfactant phase behavior in future studies.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.2c08232</identifier><identifier>PMID: 37043304</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><ispartof>The journal of physical chemistry. B, 2023-04, Vol.127 (16), p.3711-3727</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-3257ae7434f0c8e3a254a873302975bd32e37d638a4899ce825e3c4b72d817463</citedby><cites>FETCH-LOGICAL-a434t-3257ae7434f0c8e3a254a873302975bd32e37d638a4899ce825e3c4b72d817463</cites><orcidid>0000-0002-4320-8472 ; 0000-0002-0189-2704 ; 0000-0002-6107-0091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.2c08232$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.2c08232$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37043304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thacker, Joseph C. R.</creatorcontrib><creatorcontrib>Bray, David J.</creatorcontrib><creatorcontrib>Warren, Patrick B.</creatorcontrib><creatorcontrib>Anderson, Richard L.</creatorcontrib><title>Can Machine Learning Predict the Phase Behavior of Surfactants?</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We explore the prediction of surfactant phase behavior using state-of-the-art machine learning methods, using a data set for twenty-three nonionic surfactants. Most machine learning classifiers we tested are capable of filling in missing data in a partially complete data set. However, strong data bias and a lack of chemical space information generally lead to poorer results for entire de novo phase diagram prediction. Although some machine learning classifiers perform better than others, these observations are largely robust to the particular choice of algorithm. Finally, we explore how de novo phase diagram prediction can be improved by the inclusion of observations from state points sampled by an analogy to commonly used experimental protocols. Our results indicate what factors should be considered when preparing for machine learning prediction of surfactant phase behavior in future studies.</description><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRtFbvniRHD7buV7LbU9HiF1QsqOdlupmYlHZTd5OC_71bW4sePAwzMO-9GX6EnDHaZ5SzK7ChP1vaaZ9bqrnge6TDUk57sdT-ds4YzY7IcQgzSnnKdXZIjoSiUggqO2Q4Apc8gS0rh8kYwbvKvScTj3llm6QpMZmUEDC5wRJWVe2TukheWl-AbcA1YXhCDgqYBzzd9i55u7t9HT30xs_3j6PrcQ-kkE1P8FQBqjgX1GoUwFMJWsUf-ECl01xwFCrPhAapBwOLmqcorJwqnmumZCa6ZLjJXbbTBeYWXeNhbpa-WoD_NDVU5u_GVaV5r1eGUZZSkQ1iwsU2wdcfLYbGLKpgcT4Hh3UbDNeUMqkzLqOUbqTW1yF4LHZ3GDVr8CaCN2vwZgs-Ws5__7cz_JCOgsuN4Ntat95FXP_nfQFZD42-</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Thacker, Joseph C. R.</creator><creator>Bray, David J.</creator><creator>Warren, Patrick B.</creator><creator>Anderson, Richard L.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4320-8472</orcidid><orcidid>https://orcid.org/0000-0002-0189-2704</orcidid><orcidid>https://orcid.org/0000-0002-6107-0091</orcidid></search><sort><creationdate>20230427</creationdate><title>Can Machine Learning Predict the Phase Behavior of Surfactants?</title><author>Thacker, Joseph C. R. ; Bray, David J. ; Warren, Patrick B. ; Anderson, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-3257ae7434f0c8e3a254a873302975bd32e37d638a4899ce825e3c4b72d817463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thacker, Joseph C. R.</creatorcontrib><creatorcontrib>Bray, David J.</creatorcontrib><creatorcontrib>Warren, Patrick B.</creatorcontrib><creatorcontrib>Anderson, Richard L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thacker, Joseph C. R.</au><au>Bray, David J.</au><au>Warren, Patrick B.</au><au>Anderson, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can Machine Learning Predict the Phase Behavior of Surfactants?</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2023-04-27</date><risdate>2023</risdate><volume>127</volume><issue>16</issue><spage>3711</spage><epage>3727</epage><pages>3711-3727</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We explore the prediction of surfactant phase behavior using state-of-the-art machine learning methods, using a data set for twenty-three nonionic surfactants. Most machine learning classifiers we tested are capable of filling in missing data in a partially complete data set. However, strong data bias and a lack of chemical space information generally lead to poorer results for entire de novo phase diagram prediction. Although some machine learning classifiers perform better than others, these observations are largely robust to the particular choice of algorithm. Finally, we explore how de novo phase diagram prediction can be improved by the inclusion of observations from state points sampled by an analogy to commonly used experimental protocols. Our results indicate what factors should be considered when preparing for machine learning prediction of surfactant phase behavior in future studies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37043304</pmid><doi>10.1021/acs.jpcb.2c08232</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4320-8472</orcidid><orcidid>https://orcid.org/0000-0002-0189-2704</orcidid><orcidid>https://orcid.org/0000-0002-6107-0091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2023-04, Vol.127 (16), p.3711-3727
issn 1520-6106
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150369
source ACS Publications - Downers Grove, IL campus only.
subjects B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials
title Can Machine Learning Predict the Phase Behavior of Surfactants?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20Machine%20Learning%20Predict%20the%20Phase%20Behavior%20of%20Surfactants?&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Thacker,%20Joseph%20C.%20R.&rft.date=2023-04-27&rft.volume=127&rft.issue=16&rft.spage=3711&rft.epage=3727&rft.pages=3711-3727&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.2c08232&rft_dat=%3Cproquest_pubme%3E2800148624%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800148624&rft_id=info:pmid/37043304&rfr_iscdi=true