Can Machine Learning Predict the Phase Behavior of Surfactants?

We explore the prediction of surfactant phase behavior using state-of-the-art machine learning methods, using a data set for twenty-three nonionic surfactants. Most machine learning classifiers we tested are capable of filling in missing data in a partially complete data set. However, strong data bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2023-04, Vol.127 (16), p.3711-3727
Hauptverfasser: Thacker, Joseph C. R., Bray, David J., Warren, Patrick B., Anderson, Richard L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the prediction of surfactant phase behavior using state-of-the-art machine learning methods, using a data set for twenty-three nonionic surfactants. Most machine learning classifiers we tested are capable of filling in missing data in a partially complete data set. However, strong data bias and a lack of chemical space information generally lead to poorer results for entire de novo phase diagram prediction. Although some machine learning classifiers perform better than others, these observations are largely robust to the particular choice of algorithm. Finally, we explore how de novo phase diagram prediction can be improved by the inclusion of observations from state points sampled by an analogy to commonly used experimental protocols. Our results indicate what factors should be considered when preparing for machine learning prediction of surfactant phase behavior in future studies.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.2c08232