Comparative Assessment of Pesticide Exposures in Domestic Dogs and Their Owners Using Silicone Passive Samplers and Biomonitoring

Pesticides are used extensively in residential settings for lawn maintenance and in homes to control household pests including application directly on pets to deter fleas and ticks. Pesticides are commonly detected in the home environment where people and pets can be subject to chronic exposure. Due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-01, Vol.56 (2), p.1149-1161
Hauptverfasser: Wise, Catherine F, Hammel, Stephanie C, Herkert, Nicholas J, Ospina, Maria, Calafat, Antonia M, Breen, Matthew, Stapleton, Heather M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pesticides are used extensively in residential settings for lawn maintenance and in homes to control household pests including application directly on pets to deter fleas and ticks. Pesticides are commonly detected in the home environment where people and pets can be subject to chronic exposure. Due to increased interest in using companion animals as sentinels for human environmental health studies, we conducted a comparative pesticide exposure assessment in 30 people and their pet dogs to determine how well silicone wristbands and silicone dog tags can predict urinary pesticide biomarkers of exposure. Using targeted gas chromatography–mass spectrometry analyses, we quantified eight pesticides in silicone samplers and used a suspect screening approach for additional pesticides. Urine samples were analyzed for 15 pesticide metabolite biomarkers. Several pesticides were detected in >70% of silicone samplers including permethrin, N,N-diethyl-meta-toluamide (DEET), and chlorpyrifos. Significant and positive correlations were observed between silicone sampler levels of permethrin and DEET with their corresponding urinary metabolites (r s = 0.50–0.96, p < 0.05) in both species. Significantly higher levels of fipronil were observed in silicone samplers from participants who reported using flea and tick products containing fipronil on their dog. This study suggests that people and their dogs have similar pesticide exposures in a home environment.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c06819