Subphenotyping heterogeneous patients with chronic critical illness to guide individualised fluid balance treatment using machine learning: a retrospective cohort study

The great heterogeneity of patients with chronic critical illness (CCI) leads to difficulty for intensive care unit (ICU) management. Identifying subphenotypes could assist in individualized care, which has not yet been explored. In this study, we aim to identify the subphenotypes of patients with C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EClinicalMedicine 2023-05, Vol.59, p.101970-101970, Article 101970
Hauptverfasser: Liu, Peizhao, Li, Sicheng, Zheng, Tao, Wu, Jie, Fan, Yong, Liu, Xiaoli, Gong, Wenbin, Xie, Haohao, Liu, Juanhan, Li, Yangguang, Jiang, Haiyang, Zhao, Fan, Zhang, Jinpeng, Wu, Lei, Ren, Huajian, Hong, Zhiwu, Chen, Jun, Gu, Guosheng, Wang, Gefei, Zhang, Zhengbo, Wu, Xiuwen, Zhao, Yun, Ren, Jianan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The great heterogeneity of patients with chronic critical illness (CCI) leads to difficulty for intensive care unit (ICU) management. Identifying subphenotypes could assist in individualized care, which has not yet been explored. In this study, we aim to identify the subphenotypes of patients with CCI and reveal the heterogeneous treatment effect of fluid balance for them. In this retrospective study, we defined CCI as an ICU length of stay over 14 days and coexists with persistent organ dysfunction (cardiovascular Sequential Organ Failure Assessment (SOFA) score ≥1 or score in any other organ system ≥2) at Day 14. Data from five electronic healthcare record datasets covering geographically distinct populations (the US, Europe, and China) were studied. These five datasets include (1) subset of Derivation (MIMIC-IV v1.0, US) cohort (2008–2019); (2) subset Derivation (MIMIC-III v1.4 ‘CareVue’, US) cohort (2001–2008); (3) Validation I (eICU-CRD, US) cohort (2014–2015); (4) Validation II (AmsterdamUMCdb/AUMC, Euro) cohort (2003–2016); (5) Validation III (Jinling, CN) cohort (2017–2021). Patients who meet the criteria of CCI in their first ICU admission period were included in this study. Patients with age over 89 or under 18 years old were excluded. Three unsupervised clustering algorithms were employed independently for phenotypes derivation and validation. Extreme Gradient Boosting (XGBoost) was used for phenotype classifier construction. A parametric G-formula model was applied to estimate the cumulative risk under different daily fluid management strategies in different subphenotypes of ICU mortality. We identified four subphenotypes as Phenotype A, B, C, and D in a total of 8145 patients from three countries. Phenotype A is the mildest and youngest subgroup; Phenotype B is the most common group, of whom patients showed the oldest age, significant acid-base abnormality, and low white blood cell count; Patients with Phenotype C have hypernatremia, hyperchloremia, and hypercatabolic status; and in Phenotype D, patients accompany with the most severe multiple organ failure. An easy-to-use classifier showed good effectiveness. Phenotype characteristics showed robustness across all cohorts. The beneficial fluid balance threshold intervals of subphenotypes were different. We identified four novel phenotypes that revealed the different patterns and significant heterogeneous treatment effects of fluid therapy within patients with CCI. A prospective study is needed
ISSN:2589-5370
2589-5370
DOI:10.1016/j.eclinm.2023.101970