Helicity-modulated remote C-H functionalization
Remote C-H functionalization is highly important for the conversion and utilization of arenes, but the conventional routes are comprehensively developed with the assistance of transition metal catalysts or templates. We report a facile metal/template-free electrochemical strategy for remote C-H func...
Gespeichert in:
Veröffentlicht in: | Science advances 2023-04, Vol.9 (17), p.eadg6680-eadg6680 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Remote C-H functionalization is highly important for the conversion and utilization of arenes, but the conventional routes are comprehensively developed with the assistance of transition metal catalysts or templates. We report a facile metal/template-free electrochemical strategy for remote C-H functionalization in a helical system, where aromatic or aliphatic hydrogen act as a directing group to promote the alkoxylation at the opposite site of the helical skeleton by generating a unique helical "back-biting" environment. Such helicity-modulated C-H functionalization is prevalent for carbo[
]helicenes (
= 6 to 9, primitive or substituted) and hetero[6]helicenes and also occurs when the aryl hydrogen on the first position is replaced by a methyl group or a phenyl group. Thus, the relatively inert helicene skeleton can be precisely furnished with a rich array of alkoxy pendants with tunable functional moieties. Notably, the selective decoration of a methoxy group on
-methylated aza[6]helicene close or distant to the nitrogen atom leads to distinct luminescence variation upon changing the solvents. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.adg6680 |